Cargando…

Development and optimization of a new culture media using extruded bean as nitrogen source

The composition of a culture medium is one of the most important parameters to be analyzed in biotechnological processes with industrial purposes, because around 30–40% of the production costs were estimated to be accounted for the cost of the growth medium [1]. Since medium optimization using a one...

Descripción completa

Detalles Bibliográficos
Autores principales: Batista, Karla A., Fernandes, Kátia F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487701/
https://www.ncbi.nlm.nih.gov/pubmed/26150984
http://dx.doi.org/10.1016/j.mex.2015.03.001
Descripción
Sumario:The composition of a culture medium is one of the most important parameters to be analyzed in biotechnological processes with industrial purposes, because around 30–40% of the production costs were estimated to be accounted for the cost of the growth medium [1]. Since medium optimization using a one-factor-at-a-time approach is time-consuming, expensive, and often leads to misinterpretation of results, statistical experimental design has been applied to medium optimization for growth and metabolite production [2], [3], [4], [5]. In this scenario, the use of mixture design to develop a culture medium containing a cheaper nitrogen source seems to be more appropriate and simple. In this sense, the focus of this work is to present a detailed description of the steps involved in the development of a optimized culture medium containing extruded bean as nitrogen source. • In a previous work we tested a development of new culture media based on the composition of YPD medium, aiming to reduce bioprocess costs as well as to improve the biomass production and heterologous expression. • The developed medium was tested for growth of Saccharomyces cerevisiae and Pichia pastoris (GS 115). • The use of culture media containing extruded bean as sole nitrogen source showed better biomass production and protein expression than those observed in the standard YPD medium.