Cargando…

Modeling mixed boundary conditions in a Hilbert space with the complex variable boundary element method (CVBEM)

The Laplace equation that results from specifying either the normal or tangential force equilibrium equation in terms of the warping functions or its conjugate can be modeled as a complex variable boundary element method or CVBEM mixed boundary problem. The CVBEM is a well-known numerical technique...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnson, Anthony N., Hromadka, T.V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487722/
https://www.ncbi.nlm.nih.gov/pubmed/26151000
http://dx.doi.org/10.1016/j.mex.2015.05.005
Descripción
Sumario:The Laplace equation that results from specifying either the normal or tangential force equilibrium equation in terms of the warping functions or its conjugate can be modeled as a complex variable boundary element method or CVBEM mixed boundary problem. The CVBEM is a well-known numerical technique that can provide solutions to potential value problems in two or more dimensions by the use of an approximation function that is derived from the Cauchy Integral in complex analysis. This paper highlights three customizations to the technique. • A least squares approach to modeling the complex-valued approximation function will be compared and analyzed to determine if modeling error on the boundary can be reduced without the need to find and evaluated additional linearly independent complex functions. • The nodal point locations will be moved outside the problem domain. • Contour and streamline plots representing the warping function and its complementary conjugate are generated simultaneously from the complex-valued approximating function.