Cargando…

Multielectrode Teflon electrochemical nanocatalyst investigation system

The most common approach in the search for the optimal low temperature fuel cell catalyst remains “trial and error”. Therefore, large numbers of different potential catalytic materials need to be screened. The well-established and most commonly used method for testing catalytic electrochemical activ...

Descripción completa

Detalles Bibliográficos
Autor principal: Hodnik, Nejc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487726/
https://www.ncbi.nlm.nih.gov/pubmed/26150990
http://dx.doi.org/10.1016/j.mex.2015.04.004
Descripción
Sumario:The most common approach in the search for the optimal low temperature fuel cell catalyst remains “trial and error”. Therefore, large numbers of different potential catalytic materials need to be screened. The well-established and most commonly used method for testing catalytic electrochemical activity under well-defined hydrodynamics is still thin film rotating disc electrode (TF-RDE). Typically this method is very time consuming and is subjected to impurity problems. In order to avoid these issues a new multielectrode electrochemical cell design is presented, where 8 different electrocatalysts can be measured simultaneously at identical conditions. The major advantages over TF-RDE method are: • Faster catalyst screening times. • Greater impurity tolerance. • The option of internal standard.