Cargando…
Scalable microfluidics for single-cell RNA printing and sequencing
Many important biological questions demand single-cell transcriptomics on a large scale. Hence, new tools are urgently needed for efficient, inexpensive manipulation of RNA from individual cells. We report a simple platform for trapping single-cell lysates in sealed, picoliter microwells capable of...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487847/ https://www.ncbi.nlm.nih.gov/pubmed/26047807 http://dx.doi.org/10.1186/s13059-015-0684-3 |
Sumario: | Many important biological questions demand single-cell transcriptomics on a large scale. Hence, new tools are urgently needed for efficient, inexpensive manipulation of RNA from individual cells. We report a simple platform for trapping single-cell lysates in sealed, picoliter microwells capable of printing RNA on glass or capturing RNA on beads. We then develop a scalable technology for genome-wide, single-cell RNA-Seq. Our device generates pooled libraries from hundreds of individual cells with consumable costs of $0.10–$0.20 per cell and includes five lanes for simultaneous experiments. We anticipate that this system will serve as a general platform for single-cell imaging and sequencing. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0684-3) contains supplementary material, which is available to authorized users. |
---|