Cargando…
Analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method
BACKGROUND: Heart rate variability (HRV) has been widely used in the non-invasive evaluation of cardiovascular function. Recent studies have also attached great importance to the cardiac diastolic period variability (DPV) examination. Short-term variability measurement (e.g., 5 min) has drawn increa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487860/ https://www.ncbi.nlm.nih.gov/pubmed/26126807 http://dx.doi.org/10.1186/s12938-015-0063-z |
_version_ | 1782379053653688320 |
---|---|
author | Ji, Lizhen Li, Peng Li, Ke Wang, Xinpei Liu, Changchun |
author_facet | Ji, Lizhen Li, Peng Li, Ke Wang, Xinpei Liu, Changchun |
author_sort | Ji, Lizhen |
collection | PubMed |
description | BACKGROUND: Heart rate variability (HRV) has been widely used in the non-invasive evaluation of cardiovascular function. Recent studies have also attached great importance to the cardiac diastolic period variability (DPV) examination. Short-term variability measurement (e.g., 5 min) has drawn increasing attention in clinical practice, since it is able to provide almost immediate measurement results and enables the real-time monitoring of cardiovascular function. However, it is still a contemporary challenge to robustly estimate the HRV and DPV parameters based on short-term recordings. METHODS: In this study, a refined fuzzy entropy (rFuzzyEn) was developed by substituting a piecewise fuzzy membership function for the Gaussian function in conventional fuzzy entropy (FuzzyEn) measure. Its stability and robustness against additive noise compared with sample entropy (SampEn) and FuzzyEn, were examined by two well-accepted simulation models—the [Formula: see text] noise and the Logistic attractor. The rFuzzyEn was further applied to evaluate clinical short-term (5 min) HRV and DPV of the patients with coronary artery stenosis and healthy volunteers. RESULTS: Simulation results showed smaller fluctuations in the rFuzzyEn than in SampEn and FuzzyEn values when the data length was decreasing. Besides, rFuzzyEn could distinguish the simulation models with different amount of additive noise even when the percentage of additive noise reached 60%, but neither SampEn nor FuzzyEn showed comparable performance. Clinical HRV analysis did not indicate any significant differences between the patients with coronary artery disease and the healthy volunteers in all the three mentioned entropy measures (all p > 0.20). But clinical DPV analysis showed that the patient group had a significantly higher rFuzzyEn (p < 0.01) than the healthy group. However, no or less significant difference was observed between the two groups in either SampEn (p = 0.14) or FuzzyEn (p = 0.05). CONCLUSIONS: Our proposed rFuzzyEn outperformed conventional SampEn and FuzzyEn in terms of both stability and robustness against additive noise, particularly when the data set was relatively short. Analysis of DPV using rFuzzyEn may provide more valuable information to assess the cardiovascular states than the other entropy measures and has a potential for clinical application. |
format | Online Article Text |
id | pubmed-4487860 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-44878602015-07-02 Analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method Ji, Lizhen Li, Peng Li, Ke Wang, Xinpei Liu, Changchun Biomed Eng Online Research BACKGROUND: Heart rate variability (HRV) has been widely used in the non-invasive evaluation of cardiovascular function. Recent studies have also attached great importance to the cardiac diastolic period variability (DPV) examination. Short-term variability measurement (e.g., 5 min) has drawn increasing attention in clinical practice, since it is able to provide almost immediate measurement results and enables the real-time monitoring of cardiovascular function. However, it is still a contemporary challenge to robustly estimate the HRV and DPV parameters based on short-term recordings. METHODS: In this study, a refined fuzzy entropy (rFuzzyEn) was developed by substituting a piecewise fuzzy membership function for the Gaussian function in conventional fuzzy entropy (FuzzyEn) measure. Its stability and robustness against additive noise compared with sample entropy (SampEn) and FuzzyEn, were examined by two well-accepted simulation models—the [Formula: see text] noise and the Logistic attractor. The rFuzzyEn was further applied to evaluate clinical short-term (5 min) HRV and DPV of the patients with coronary artery stenosis and healthy volunteers. RESULTS: Simulation results showed smaller fluctuations in the rFuzzyEn than in SampEn and FuzzyEn values when the data length was decreasing. Besides, rFuzzyEn could distinguish the simulation models with different amount of additive noise even when the percentage of additive noise reached 60%, but neither SampEn nor FuzzyEn showed comparable performance. Clinical HRV analysis did not indicate any significant differences between the patients with coronary artery disease and the healthy volunteers in all the three mentioned entropy measures (all p > 0.20). But clinical DPV analysis showed that the patient group had a significantly higher rFuzzyEn (p < 0.01) than the healthy group. However, no or less significant difference was observed between the two groups in either SampEn (p = 0.14) or FuzzyEn (p = 0.05). CONCLUSIONS: Our proposed rFuzzyEn outperformed conventional SampEn and FuzzyEn in terms of both stability and robustness against additive noise, particularly when the data set was relatively short. Analysis of DPV using rFuzzyEn may provide more valuable information to assess the cardiovascular states than the other entropy measures and has a potential for clinical application. BioMed Central 2015-07-01 /pmc/articles/PMC4487860/ /pubmed/26126807 http://dx.doi.org/10.1186/s12938-015-0063-z Text en © Ji et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Ji, Lizhen Li, Peng Li, Ke Wang, Xinpei Liu, Changchun Analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method |
title | Analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method |
title_full | Analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method |
title_fullStr | Analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method |
title_full_unstemmed | Analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method |
title_short | Analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method |
title_sort | analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487860/ https://www.ncbi.nlm.nih.gov/pubmed/26126807 http://dx.doi.org/10.1186/s12938-015-0063-z |
work_keys_str_mv | AT jilizhen analysisofshorttermheartrateanddiastolicperiodvariabilityusingarefinedfuzzyentropymethod AT lipeng analysisofshorttermheartrateanddiastolicperiodvariabilityusingarefinedfuzzyentropymethod AT like analysisofshorttermheartrateanddiastolicperiodvariabilityusingarefinedfuzzyentropymethod AT wangxinpei analysisofshorttermheartrateanddiastolicperiodvariabilityusingarefinedfuzzyentropymethod AT liuchangchun analysisofshorttermheartrateanddiastolicperiodvariabilityusingarefinedfuzzyentropymethod |