Cargando…
Role of Bone Marrow-Derived Stem Cells in Polyps Development in Mice with Apc(Min/+) Mutation
We explored the hypothesis that an altered microenvironment (intestinal adenomatous polyp) could modify the differentiation program of bone marrow-derived stem cells (BMSCs), involving them in colon carcinogenesis. Sublethally irradiated 8-week-old female Apc(Min/+) mice were transplanted with bone...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488009/ https://www.ncbi.nlm.nih.gov/pubmed/26167184 http://dx.doi.org/10.1155/2015/354193 |
Sumario: | We explored the hypothesis that an altered microenvironment (intestinal adenomatous polyp) could modify the differentiation program of bone marrow-derived stem cells (BMSCs), involving them in colon carcinogenesis. Sublethally irradiated 8-week-old female Apc(Min/+) mice were transplanted with bone marrow (BM) cells obtained from either male age-matched Apc(Min/+) (Apc-Tx-Apc) or wild type (WT) (WT-Tx-Apc) mice. At 4 and 7 weeks after transplantation, BM-derived colonocytes were recognized by colocalization of Y-chromosome and Cdx2 protein (specific colonocyte marker). Polyp number, volume, and grade of dysplasia were not influenced by irradiation/transplantation procedures since they were similar in both untreated female Apc(Min/+) and Apc-Tx-Apc mice. At 4 and 7 weeks after transplantation, a progressive significant reduction of polyp number and volume was observed in WT-Tx-Apc mice. Moreover, the number of WT-Tx-Apc mice with a high-grade dysplastic polyps significantly decreased as compared to Apc-Tx-Apc mice. Finally, at 4 and 7 weeks after transplantation, WT-Tx-Apc mice showed a progressive significant increase of Y+/Cdx2+ cells in “normal” mucosa, whereas, in the adenomatous tissue, Y+/Cdx2+ cells remained substantially unvaried. Our findings demonstrate that WT BMSCs do not participate in polyp development but rather inhibit their growth. The substitution of genotypically altered colonocytes with Y+/Cdx2+ cells probably contributes to this process. |
---|