Cargando…
Information Filtering via Heterogeneous Diffusion in Online Bipartite Networks
The rapid expansion of Internet brings us overwhelming online information, which is impossible for an individual to go through all of it. Therefore, recommender systems were created to help people dig through this abundance of information. In networks composed by users and objects, recommender algor...
Autores principales: | Zhang, Fu-Guo, Zeng, An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488376/ https://www.ncbi.nlm.nih.gov/pubmed/26125631 http://dx.doi.org/10.1371/journal.pone.0129459 |
Ejemplares similares
-
Information Filtering in Sparse Online Systems: Recommendation via Semi-Local Diffusion
por: Zeng, Wei, et al.
Publicado: (2013) -
Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
por: Wang, Zichen, et al.
Publicado: (2020) -
Stability of similarity measurements for bipartite networks
por: Liu, Jian-Guo, et al.
Publicado: (2016) -
Fractal and multifractal analyses of bipartite networks
por: Liu, Jin-Long, et al.
Publicado: (2017) -
Heterogeneity within and across Pediatric Pulmonary Infections: From Bipartite Networks to At-Risk Subphenotypes
por: Bhavnani, Suresh K., et al.
Publicado: (2014)