Cargando…

Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques

Neuroimaging and neurophysiology have revealed that multiple areas in the prefrontal cortex (PFC) are activated in a specific memory task, but severity of impairment after PFC lesions is largely different depending on which activated area is damaged. The critical relationship between lesion sites an...

Descripción completa

Detalles Bibliográficos
Autores principales: Osada, Takahiro, Adachi, Yusuke, Miyamoto, Kentaro, Jimura, Koji, Setsuie, Rieko, Miyashita, Yasushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488377/
https://www.ncbi.nlm.nih.gov/pubmed/26125513
http://dx.doi.org/10.1371/journal.pbio.1002177
_version_ 1782379145064349696
author Osada, Takahiro
Adachi, Yusuke
Miyamoto, Kentaro
Jimura, Koji
Setsuie, Rieko
Miyashita, Yasushi
author_facet Osada, Takahiro
Adachi, Yusuke
Miyamoto, Kentaro
Jimura, Koji
Setsuie, Rieko
Miyashita, Yasushi
author_sort Osada, Takahiro
collection PubMed
description Neuroimaging and neurophysiology have revealed that multiple areas in the prefrontal cortex (PFC) are activated in a specific memory task, but severity of impairment after PFC lesions is largely different depending on which activated area is damaged. The critical relationship between lesion sites and impairments has not yet been given a clear mechanistic explanation. Although recent works proposed that a whole-brain network contains hubs that play integrative roles in cortical information processing, this framework relying on an anatomy-based structural network cannot account for the vulnerable locus for a specific task, lesioning of which would bring impairment. Here, we hypothesized that (i) activated PFC areas dynamically form an ordered network centered at a task-specific “functional hub” and (ii) the lesion-effective site corresponds to the “functional hub,” but not to a task-invariant “structural hub.” To test these hypotheses, we conducted functional magnetic resonance imaging experiments in macaques performing a temporal contextual memory task. We found that the activated areas formed a hierarchical hub-centric network based on task-evoked directed connectivity, differently from the anatomical network reflecting axonal projection patterns. Using a novel simulated-lesion method based on support vector machine, we estimated severity of impairment after lesioning of each area, which accorded well with a known dissociation in contextual memory impairment in macaques (impairment after lesioning in area 9/46d, but not in area 8Ad). The predicted severity of impairment was proportional to the network “hubness” of the virtually lesioned area in the task-evoked directed connectivity network, rather than in the anatomical network known from tracer studies. Our results suggest that PFC areas dynamically and cooperatively shape a functional hub-centric network to reallocate the lesion-effective site depending on the cognitive processes, apart from static anatomical hubs. These findings will be a foundation for precise prediction of behavioral impacts of damage or surgical intervention in human brains.
format Online
Article
Text
id pubmed-4488377
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-44883772015-07-02 Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques Osada, Takahiro Adachi, Yusuke Miyamoto, Kentaro Jimura, Koji Setsuie, Rieko Miyashita, Yasushi PLoS Biol Research Article Neuroimaging and neurophysiology have revealed that multiple areas in the prefrontal cortex (PFC) are activated in a specific memory task, but severity of impairment after PFC lesions is largely different depending on which activated area is damaged. The critical relationship between lesion sites and impairments has not yet been given a clear mechanistic explanation. Although recent works proposed that a whole-brain network contains hubs that play integrative roles in cortical information processing, this framework relying on an anatomy-based structural network cannot account for the vulnerable locus for a specific task, lesioning of which would bring impairment. Here, we hypothesized that (i) activated PFC areas dynamically form an ordered network centered at a task-specific “functional hub” and (ii) the lesion-effective site corresponds to the “functional hub,” but not to a task-invariant “structural hub.” To test these hypotheses, we conducted functional magnetic resonance imaging experiments in macaques performing a temporal contextual memory task. We found that the activated areas formed a hierarchical hub-centric network based on task-evoked directed connectivity, differently from the anatomical network reflecting axonal projection patterns. Using a novel simulated-lesion method based on support vector machine, we estimated severity of impairment after lesioning of each area, which accorded well with a known dissociation in contextual memory impairment in macaques (impairment after lesioning in area 9/46d, but not in area 8Ad). The predicted severity of impairment was proportional to the network “hubness” of the virtually lesioned area in the task-evoked directed connectivity network, rather than in the anatomical network known from tracer studies. Our results suggest that PFC areas dynamically and cooperatively shape a functional hub-centric network to reallocate the lesion-effective site depending on the cognitive processes, apart from static anatomical hubs. These findings will be a foundation for precise prediction of behavioral impacts of damage or surgical intervention in human brains. Public Library of Science 2015-06-30 /pmc/articles/PMC4488377/ /pubmed/26125513 http://dx.doi.org/10.1371/journal.pbio.1002177 Text en © 2015 Osada et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Osada, Takahiro
Adachi, Yusuke
Miyamoto, Kentaro
Jimura, Koji
Setsuie, Rieko
Miyashita, Yasushi
Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques
title Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques
title_full Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques
title_fullStr Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques
title_full_unstemmed Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques
title_short Dynamically Allocated Hub in Task-Evoked Network Predicts the Vulnerable Prefrontal Locus for Contextual Memory Retrieval in Macaques
title_sort dynamically allocated hub in task-evoked network predicts the vulnerable prefrontal locus for contextual memory retrieval in macaques
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488377/
https://www.ncbi.nlm.nih.gov/pubmed/26125513
http://dx.doi.org/10.1371/journal.pbio.1002177
work_keys_str_mv AT osadatakahiro dynamicallyallocatedhubintaskevokednetworkpredictsthevulnerableprefrontallocusforcontextualmemoryretrievalinmacaques
AT adachiyusuke dynamicallyallocatedhubintaskevokednetworkpredictsthevulnerableprefrontallocusforcontextualmemoryretrievalinmacaques
AT miyamotokentaro dynamicallyallocatedhubintaskevokednetworkpredictsthevulnerableprefrontallocusforcontextualmemoryretrievalinmacaques
AT jimurakoji dynamicallyallocatedhubintaskevokednetworkpredictsthevulnerableprefrontallocusforcontextualmemoryretrievalinmacaques
AT setsuierieko dynamicallyallocatedhubintaskevokednetworkpredictsthevulnerableprefrontallocusforcontextualmemoryretrievalinmacaques
AT miyashitayasushi dynamicallyallocatedhubintaskevokednetworkpredictsthevulnerableprefrontallocusforcontextualmemoryretrievalinmacaques