Cargando…
Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing
This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA com...
Autores principales: | Abubaker, Ahmad, Baharum, Adam, Alrefaei, Mahmoud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488466/ https://www.ncbi.nlm.nih.gov/pubmed/26132309 http://dx.doi.org/10.1371/journal.pone.0130995 |
Ejemplares similares
-
Improved multi-objective clustering algorithm using particle swarm optimization
por: Gong, Congcong, et al.
Publicado: (2017) -
Distributed Particle Swarm Optimization and Simulated Annealing for Energy-efficient Coverage in Wireless Sensor Networks
por: Wang, Xue, et al.
Publicado: (2007) -
Dual Cluster Head Optimization of Wireless Sensor Networks Based on Multi-Objective Particle Swarm Optimization
por: Zheng, Aiyun, et al.
Publicado: (2022) -
A clustering-based competitive particle swarm optimization with grid ranking for multi-objective optimization problems
por: Ye, Qianlin, et al.
Publicado: (2023) -
R2-Based Multi/Many-Objective Particle Swarm Optimization
por: Díaz-Manríquez, Alan, et al.
Publicado: (2016)