Cargando…
Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis
Advanced glycation end products (AGEs), the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS) production. Sesamin has been demonstrated to possess antioxidative activity. This stud...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488808/ https://www.ncbi.nlm.nih.gov/pubmed/26066015 http://dx.doi.org/10.3390/nu7064689 |
_version_ | 1782379230626054144 |
---|---|
author | Kong, Xiang Wang, Guo-Dong Ma, Ming-Zhe Deng, Ru-Yuan Guo, Li-Qun Zhang, Jun-Xiu Yang, Jie-Ren Su, Qing |
author_facet | Kong, Xiang Wang, Guo-Dong Ma, Ming-Zhe Deng, Ru-Yuan Guo, Li-Qun Zhang, Jun-Xiu Yang, Jie-Ren Su, Qing |
author_sort | Kong, Xiang |
collection | PubMed |
description | Advanced glycation end products (AGEs), the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS) production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg) and orally treated with sesamin (160 mg/kg) for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM) and then exposed to AGEs (200 mg/L) for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67(phox) and p22(phox), and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress. |
format | Online Article Text |
id | pubmed-4488808 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-44888082015-07-02 Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis Kong, Xiang Wang, Guo-Dong Ma, Ming-Zhe Deng, Ru-Yuan Guo, Li-Qun Zhang, Jun-Xiu Yang, Jie-Ren Su, Qing Nutrients Article Advanced glycation end products (AGEs), the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS) production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg) and orally treated with sesamin (160 mg/kg) for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM) and then exposed to AGEs (200 mg/L) for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67(phox) and p22(phox), and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress. MDPI 2015-06-09 /pmc/articles/PMC4488808/ /pubmed/26066015 http://dx.doi.org/10.3390/nu7064689 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kong, Xiang Wang, Guo-Dong Ma, Ming-Zhe Deng, Ru-Yuan Guo, Li-Qun Zhang, Jun-Xiu Yang, Jie-Ren Su, Qing Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis |
title | Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis |
title_full | Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis |
title_fullStr | Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis |
title_full_unstemmed | Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis |
title_short | Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis |
title_sort | sesamin ameliorates advanced glycation end products-induced pancreatic β-cell dysfunction and apoptosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488808/ https://www.ncbi.nlm.nih.gov/pubmed/26066015 http://dx.doi.org/10.3390/nu7064689 |
work_keys_str_mv | AT kongxiang sesaminamelioratesadvancedglycationendproductsinducedpancreaticbcelldysfunctionandapoptosis AT wangguodong sesaminamelioratesadvancedglycationendproductsinducedpancreaticbcelldysfunctionandapoptosis AT mamingzhe sesaminamelioratesadvancedglycationendproductsinducedpancreaticbcelldysfunctionandapoptosis AT dengruyuan sesaminamelioratesadvancedglycationendproductsinducedpancreaticbcelldysfunctionandapoptosis AT guoliqun sesaminamelioratesadvancedglycationendproductsinducedpancreaticbcelldysfunctionandapoptosis AT zhangjunxiu sesaminamelioratesadvancedglycationendproductsinducedpancreaticbcelldysfunctionandapoptosis AT yangjieren sesaminamelioratesadvancedglycationendproductsinducedpancreaticbcelldysfunctionandapoptosis AT suqing sesaminamelioratesadvancedglycationendproductsinducedpancreaticbcelldysfunctionandapoptosis |