Cargando…

Statin Effects on Aggression: Results from the UCSD Statin Study, a Randomized Control Trial

BACKGROUND: Low/ered cholesterol is linked to aggression in some study designs. Cases/series have reported reproducible aggression increases on statins, but statins also bear mechanisms that could reduce aggression. Usual statin effects on aggression have not been characterized. METHODS: 1016 adults...

Descripción completa

Detalles Bibliográficos
Autores principales: Golomb, Beatrice A., Dimsdale, Joel E., Koslik, Hayley J., Evans, Marcella A., Lu, Xun, Rossi, Steven, Mills, Paul J., White, Halbert L., Criqui, Michael H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488854/
https://www.ncbi.nlm.nih.gov/pubmed/26132393
http://dx.doi.org/10.1371/journal.pone.0124451
Descripción
Sumario:BACKGROUND: Low/ered cholesterol is linked to aggression in some study designs. Cases/series have reported reproducible aggression increases on statins, but statins also bear mechanisms that could reduce aggression. Usual statin effects on aggression have not been characterized. METHODS: 1016 adults (692 men, 324 postmenopausal women) underwent double-blind sex-stratified randomization to placebo, simvastatin 20mg, or pravastatin 40mg (6 months). The Overt-Aggression-Scale-Modified–Aggression-Subscale (OASMa) assessed behavioral aggression. A significant sex-statin interaction was deemed to dictate sex-stratified analysis. Exploratory analyses assessed the influence of baseline-aggression, testosterone-change (men), sleep and age. RESULTS: The sex-statin interaction was significant (P=0.008). In men, statins tended to decrease aggression, significantly so on pravastatin: difference=-1.0(SE=0.49)P=0.038. Three marked outliers (OASMa-change ≥40 points) offset otherwise strong significance-vs-placebo: statins:-1.3(SE=0.38)P=0.0007; simvastatin:-1.4(SE=0.43)P=0.0011; pravastatin:-1.2(SE=0.45)P=0.0083. Age≤40 predicted greater aggression-decline on statins: difference=-1.4(SE=0.64)P=0.026. Aggression-protection was emphasized in those with low baseline aggression: age<40-and-low-baseline-aggression (N=40) statin-difference-vs-placebo=-2.4(SE=0.71)P=0.0016. Statins (especially simvastatin) lowered testosterone, and increased sleep problems. Testosterone-drop on statins predicted aggression-decline: β=0.64(SE=0.30)P=0.034, particularly on simvastatin: β=1.29(SE=0.49)P=0.009. Sleep-worsening on statins significantly predicted aggression-increase: β=2.2(SE=0.55)P<0.001, particularly on simvastatin (potentially explaining two of the outliers): β=3.3(SE=0.83)P<0.001. Among (postmenopausal) women, a borderline aggression-increase on statins became significant with exclusion of one younger, surgically-menopausal woman (N=310) β=0.70(SE=0.34)P=0.039. The increase was significant, without exclusions, for women of more typical postmenopausal age (≥45): (N=304) β=0.68(SE=0.34)P=0.048 – retaining significance with modified age-cutoffs (≥50 or ≥55). Significance was observed separately for simvastatin. The aggression-increase in women on statins was stronger in those with low baseline aggression (N=175) β=0.84(SE=0.30)P=0.006. No statin effect on whole blood serotonin was observed; and serotonin-change did not predict aggression-change. CONCLUSION: Statin effects on aggression differed by sex and age: Statins generally decreased aggression in men; and generally increased aggression in women. Both findings were selectively prominent in participants with low baseline aggression – bearing lower change-variance, rendering an effect more readily evident. TRIAL REGISTRATION: Clinicaltrials.gov NCT00330980