Cargando…

Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach?

BACKGROUND: Recognition of homogeneous subgroups of patients can usefully improve prediction of their outcomes and the targeting of treatment. There are a number of research approaches that have been used to recognise homogeneity in such subgroups and to test their implications. One approach is to u...

Descripción completa

Detalles Bibliográficos
Autores principales: Kent, Peter, Stochkendahl, Mette Jensen, Christensen, Henrik Wulff, Kongsted, Alice
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489132/
https://www.ncbi.nlm.nih.gov/pubmed/26140192
http://dx.doi.org/10.1186/s12998-015-0064-9
_version_ 1782379300362649600
author Kent, Peter
Stochkendahl, Mette Jensen
Christensen, Henrik Wulff
Kongsted, Alice
author_facet Kent, Peter
Stochkendahl, Mette Jensen
Christensen, Henrik Wulff
Kongsted, Alice
author_sort Kent, Peter
collection PubMed
description BACKGROUND: Recognition of homogeneous subgroups of patients can usefully improve prediction of their outcomes and the targeting of treatment. There are a number of research approaches that have been used to recognise homogeneity in such subgroups and to test their implications. One approach is to use statistical clustering techniques, such as Cluster Analysis or Latent Class Analysis, to detect latent relationships between patient characteristics. Influential patient characteristics can come from diverse domains of health, such as pain, activity limitation, physical impairment, social role participation, psychological factors, biomarkers and imaging. However, such ‘whole person’ research may result in data-driven subgroups that are complex, difficult to interpret and challenging to recognise clinically. This paper describes a novel approach to applying statistical clustering techniques that may improve the clinical interpretability of derived subgroups and reduce sample size requirements. METHODS: This approach involves clustering in two sequential stages. The first stage involves clustering within health domains and therefore requires creating as many clustering models as there are health domains in the available data. This first stage produces scoring patterns within each domain. The second stage involves clustering using the scoring patterns from each health domain (from the first stage) to identify subgroups across all domains. We illustrate this using chest pain data from the baseline presentation of 580 patients. RESULTS: The new two-stage clustering resulted in two subgroups that approximated the classic textbook descriptions of musculoskeletal chest pain and atypical angina chest pain. The traditional single-stage clustering resulted in five clusters that were also clinically recognisable but displayed less distinct differences. CONCLUSIONS: In this paper, a new approach to using clustering techniques to identify clinically useful subgroups of patients is suggested. Research designs, statistical methods and outcome metrics suitable for performing that testing are also described. This approach has potential benefits but requires broad testing, in multiple patient samples, to determine its clinical value. The usefulness of the approach is likely to be context-specific, depending on the characteristics of the available data and the research question being asked of it.
format Online
Article
Text
id pubmed-4489132
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-44891322015-07-03 Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach? Kent, Peter Stochkendahl, Mette Jensen Christensen, Henrik Wulff Kongsted, Alice Chiropr Man Therap Methodology BACKGROUND: Recognition of homogeneous subgroups of patients can usefully improve prediction of their outcomes and the targeting of treatment. There are a number of research approaches that have been used to recognise homogeneity in such subgroups and to test their implications. One approach is to use statistical clustering techniques, such as Cluster Analysis or Latent Class Analysis, to detect latent relationships between patient characteristics. Influential patient characteristics can come from diverse domains of health, such as pain, activity limitation, physical impairment, social role participation, psychological factors, biomarkers and imaging. However, such ‘whole person’ research may result in data-driven subgroups that are complex, difficult to interpret and challenging to recognise clinically. This paper describes a novel approach to applying statistical clustering techniques that may improve the clinical interpretability of derived subgroups and reduce sample size requirements. METHODS: This approach involves clustering in two sequential stages. The first stage involves clustering within health domains and therefore requires creating as many clustering models as there are health domains in the available data. This first stage produces scoring patterns within each domain. The second stage involves clustering using the scoring patterns from each health domain (from the first stage) to identify subgroups across all domains. We illustrate this using chest pain data from the baseline presentation of 580 patients. RESULTS: The new two-stage clustering resulted in two subgroups that approximated the classic textbook descriptions of musculoskeletal chest pain and atypical angina chest pain. The traditional single-stage clustering resulted in five clusters that were also clinically recognisable but displayed less distinct differences. CONCLUSIONS: In this paper, a new approach to using clustering techniques to identify clinically useful subgroups of patients is suggested. Research designs, statistical methods and outcome metrics suitable for performing that testing are also described. This approach has potential benefits but requires broad testing, in multiple patient samples, to determine its clinical value. The usefulness of the approach is likely to be context-specific, depending on the characteristics of the available data and the research question being asked of it. BioMed Central 2015-07-02 /pmc/articles/PMC4489132/ /pubmed/26140192 http://dx.doi.org/10.1186/s12998-015-0064-9 Text en © Kent et al. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Methodology
Kent, Peter
Stochkendahl, Mette Jensen
Christensen, Henrik Wulff
Kongsted, Alice
Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach?
title Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach?
title_full Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach?
title_fullStr Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach?
title_full_unstemmed Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach?
title_short Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach?
title_sort could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach?
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489132/
https://www.ncbi.nlm.nih.gov/pubmed/26140192
http://dx.doi.org/10.1186/s12998-015-0064-9
work_keys_str_mv AT kentpeter couldtheclinicalinterpretabilityofsubgroupsdetectedusingclusteringmethodsbeimprovedbyusinganoveltwostageapproach
AT stochkendahlmettejensen couldtheclinicalinterpretabilityofsubgroupsdetectedusingclusteringmethodsbeimprovedbyusinganoveltwostageapproach
AT christensenhenrikwulff couldtheclinicalinterpretabilityofsubgroupsdetectedusingclusteringmethodsbeimprovedbyusinganoveltwostageapproach
AT kongstedalice couldtheclinicalinterpretabilityofsubgroupsdetectedusingclusteringmethodsbeimprovedbyusinganoveltwostageapproach