Cargando…

PLIP: fully automated protein–ligand interaction profiler

The characterization of interactions in protein–ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein–ligand interaction profiler (PLIP), a nov...

Descripción completa

Detalles Bibliográficos
Autores principales: Salentin, Sebastian, Schreiber, Sven, Haupt, V. Joachim, Adasme, Melissa F., Schroeder, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489249/
https://www.ncbi.nlm.nih.gov/pubmed/25873628
http://dx.doi.org/10.1093/nar/gkv315
_version_ 1782379319902863360
author Salentin, Sebastian
Schreiber, Sven
Haupt, V. Joachim
Adasme, Melissa F.
Schroeder, Michael
author_facet Salentin, Sebastian
Schreiber, Sven
Haupt, V. Joachim
Adasme, Melissa F.
Schroeder, Michael
author_sort Salentin, Sebastian
collection PubMed
description The characterization of interactions in protein–ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein–ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein–ligand contacts in 3D structures, freely available at projects.biotec.tu-dresden.de/plip-web. The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein–ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling.
format Online
Article
Text
id pubmed-4489249
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-44892492015-07-07 PLIP: fully automated protein–ligand interaction profiler Salentin, Sebastian Schreiber, Sven Haupt, V. Joachim Adasme, Melissa F. Schroeder, Michael Nucleic Acids Res Web Server issue The characterization of interactions in protein–ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein–ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein–ligand contacts in 3D structures, freely available at projects.biotec.tu-dresden.de/plip-web. The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein–ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling. Oxford University Press 2015-07-01 2015-04-14 /pmc/articles/PMC4489249/ /pubmed/25873628 http://dx.doi.org/10.1093/nar/gkv315 Text en © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Web Server issue
Salentin, Sebastian
Schreiber, Sven
Haupt, V. Joachim
Adasme, Melissa F.
Schroeder, Michael
PLIP: fully automated protein–ligand interaction profiler
title PLIP: fully automated protein–ligand interaction profiler
title_full PLIP: fully automated protein–ligand interaction profiler
title_fullStr PLIP: fully automated protein–ligand interaction profiler
title_full_unstemmed PLIP: fully automated protein–ligand interaction profiler
title_short PLIP: fully automated protein–ligand interaction profiler
title_sort plip: fully automated protein–ligand interaction profiler
topic Web Server issue
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489249/
https://www.ncbi.nlm.nih.gov/pubmed/25873628
http://dx.doi.org/10.1093/nar/gkv315
work_keys_str_mv AT salentinsebastian plipfullyautomatedproteinligandinteractionprofiler
AT schreibersven plipfullyautomatedproteinligandinteractionprofiler
AT hauptvjoachim plipfullyautomatedproteinligandinteractionprofiler
AT adasmemelissaf plipfullyautomatedproteinligandinteractionprofiler
AT schroedermichael plipfullyautomatedproteinligandinteractionprofiler