Cargando…
StemChecker: a web-based tool to discover and explore stemness signatures in gene sets
Stem cells present unique regenerative abilities, offering great potential for treatment of prevalent pathologies such as diabetes, neurodegenerative and heart diseases. Various research groups dedicated significant effort to identify sets of genes—so-called stemness signatures—considered essential...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489266/ https://www.ncbi.nlm.nih.gov/pubmed/26007653 http://dx.doi.org/10.1093/nar/gkv529 |
_version_ | 1782379323688222720 |
---|---|
author | Pinto, José P. Kalathur, Ravi K. Oliveira, Daniel V. Barata, Tânia Machado, Rui S.R. Machado, Susana Pacheco-Leyva, Ivette Duarte, Isabel Futschik, Matthias E. |
author_facet | Pinto, José P. Kalathur, Ravi K. Oliveira, Daniel V. Barata, Tânia Machado, Rui S.R. Machado, Susana Pacheco-Leyva, Ivette Duarte, Isabel Futschik, Matthias E. |
author_sort | Pinto, José P. |
collection | PubMed |
description | Stem cells present unique regenerative abilities, offering great potential for treatment of prevalent pathologies such as diabetes, neurodegenerative and heart diseases. Various research groups dedicated significant effort to identify sets of genes—so-called stemness signatures—considered essential to define stem cells. However, their usage has been hindered by the lack of comprehensive resources and easy-to-use tools. For this we developed StemChecker, a novel stemness analysis tool, based on the curation of nearly fifty published stemness signatures defined by gene expression, RNAi screens, Transcription Factor (TF) binding sites, literature reviews and computational approaches. StemChecker allows researchers to explore the presence of stemness signatures in user-defined gene sets, without carrying-out lengthy literature curation or data processing. To assist in exploring underlying regulatory mechanisms, we collected over 80 target gene sets of TFs associated with pluri- or multipotency. StemChecker presents an intuitive graphical display, as well as detailed statistical results in table format, which helps revealing transcriptionally regulatory programs, indicating the putative involvement of stemness-associated processes in diseases like cancer. Overall, StemChecker substantially expands the available repertoire of online tools, designed to assist the stem cell biology, developmental biology, regenerative medicine and human disease research community. StemChecker is freely accessible at http://stemchecker.sysbiolab.eu. |
format | Online Article Text |
id | pubmed-4489266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-44892662015-07-07 StemChecker: a web-based tool to discover and explore stemness signatures in gene sets Pinto, José P. Kalathur, Ravi K. Oliveira, Daniel V. Barata, Tânia Machado, Rui S.R. Machado, Susana Pacheco-Leyva, Ivette Duarte, Isabel Futschik, Matthias E. Nucleic Acids Res Web Server issue Stem cells present unique regenerative abilities, offering great potential for treatment of prevalent pathologies such as diabetes, neurodegenerative and heart diseases. Various research groups dedicated significant effort to identify sets of genes—so-called stemness signatures—considered essential to define stem cells. However, their usage has been hindered by the lack of comprehensive resources and easy-to-use tools. For this we developed StemChecker, a novel stemness analysis tool, based on the curation of nearly fifty published stemness signatures defined by gene expression, RNAi screens, Transcription Factor (TF) binding sites, literature reviews and computational approaches. StemChecker allows researchers to explore the presence of stemness signatures in user-defined gene sets, without carrying-out lengthy literature curation or data processing. To assist in exploring underlying regulatory mechanisms, we collected over 80 target gene sets of TFs associated with pluri- or multipotency. StemChecker presents an intuitive graphical display, as well as detailed statistical results in table format, which helps revealing transcriptionally regulatory programs, indicating the putative involvement of stemness-associated processes in diseases like cancer. Overall, StemChecker substantially expands the available repertoire of online tools, designed to assist the stem cell biology, developmental biology, regenerative medicine and human disease research community. StemChecker is freely accessible at http://stemchecker.sysbiolab.eu. Oxford University Press 2015-07-01 2015-05-24 /pmc/articles/PMC4489266/ /pubmed/26007653 http://dx.doi.org/10.1093/nar/gkv529 Text en © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Web Server issue Pinto, José P. Kalathur, Ravi K. Oliveira, Daniel V. Barata, Tânia Machado, Rui S.R. Machado, Susana Pacheco-Leyva, Ivette Duarte, Isabel Futschik, Matthias E. StemChecker: a web-based tool to discover and explore stemness signatures in gene sets |
title | StemChecker: a web-based tool to discover and explore stemness signatures in gene sets |
title_full | StemChecker: a web-based tool to discover and explore stemness signatures in gene sets |
title_fullStr | StemChecker: a web-based tool to discover and explore stemness signatures in gene sets |
title_full_unstemmed | StemChecker: a web-based tool to discover and explore stemness signatures in gene sets |
title_short | StemChecker: a web-based tool to discover and explore stemness signatures in gene sets |
title_sort | stemchecker: a web-based tool to discover and explore stemness signatures in gene sets |
topic | Web Server issue |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489266/ https://www.ncbi.nlm.nih.gov/pubmed/26007653 http://dx.doi.org/10.1093/nar/gkv529 |
work_keys_str_mv | AT pintojosep stemcheckerawebbasedtooltodiscoverandexplorestemnesssignaturesingenesets AT kalathurravik stemcheckerawebbasedtooltodiscoverandexplorestemnesssignaturesingenesets AT oliveiradanielv stemcheckerawebbasedtooltodiscoverandexplorestemnesssignaturesingenesets AT baratatania stemcheckerawebbasedtooltodiscoverandexplorestemnesssignaturesingenesets AT machadoruisr stemcheckerawebbasedtooltodiscoverandexplorestemnesssignaturesingenesets AT machadosusana stemcheckerawebbasedtooltodiscoverandexplorestemnesssignaturesingenesets AT pachecoleyvaivette stemcheckerawebbasedtooltodiscoverandexplorestemnesssignaturesingenesets AT duarteisabel stemcheckerawebbasedtooltodiscoverandexplorestemnesssignaturesingenesets AT futschikmatthiase stemcheckerawebbasedtooltodiscoverandexplorestemnesssignaturesingenesets |