Cargando…

Enzymatic Synthesis of Galactosylated Serine/Threonine Derivatives by β-Galactosidase from Escherichia coli

The transgalactosylations of serine/threonine derivatives were investigated using β-galactosidase from Escherichia coli as biocatalyst. Using ortho-nitrophenyl-β-d-galactoside as donor, the highest bioconversion yield of transgalactosylated N-carboxy benzyl l-serine benzyl ester (23.2%) was achieved...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Sooyoun, Rebehmed, Joseph, de Brevern, Alexandre G., Karboune, Salwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490519/
https://www.ncbi.nlm.nih.gov/pubmed/26084049
http://dx.doi.org/10.3390/ijms160613714
Descripción
Sumario:The transgalactosylations of serine/threonine derivatives were investigated using β-galactosidase from Escherichia coli as biocatalyst. Using ortho-nitrophenyl-β-d-galactoside as donor, the highest bioconversion yield of transgalactosylated N-carboxy benzyl l-serine benzyl ester (23.2%) was achieved in heptane:buffer medium (70:30), whereas with the lactose, the highest bioconversion yield (3.94%) was obtained in the buffer reaction system. The structures of most abundant galactosylated serine products were characterized by MS/MS. The molecular docking simulation revealed that the binding of serine/threonine derivatives to the enzyme’s active site was stronger (−4.6~−7.9 kcal/mol) than that of the natural acceptor, glucose, and mainly occurred through interactions with aromatic residues. For N-tert-butoxycarbonyl serine methyl ester (6.8%) and N-carboxybenzyl serine benzyl ester (3.4%), their binding affinities and the distances between their hydroxyl side chain and the 1′-OH group of galactose moiety were in good accordance with the quantified bioconversion yields. Despite its lower predicted bioconversion yield, the high experimental bioconversion yield obtained with N-carboxybenzyl serine methyl ester (23.2%) demonstrated the importance of the thermodynamically-driven nature of the transgalactosylation reaction.