Cargando…
Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis
Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C) and heat (42 °C) stress was studied using microarrays....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490523/ https://www.ncbi.nlm.nih.gov/pubmed/26086826 http://dx.doi.org/10.3390/ijms160613781 |
_version_ | 1782379522920808448 |
---|---|
author | Gürgan, Muazzez Afşar Erkal, Nilüfer Özgür, Ebru Gündüz, Ufuk Eroglu, Inci Yücel, Meral |
author_facet | Gürgan, Muazzez Afşar Erkal, Nilüfer Özgür, Ebru Gündüz, Ufuk Eroglu, Inci Yücel, Meral |
author_sort | Gürgan, Muazzez |
collection | PubMed |
description | Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C) and heat (42 °C) stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip(®). TR_RCH2a520699F). The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS) bacteria under temperature stress. |
format | Online Article Text |
id | pubmed-4490523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-44905232015-07-07 Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis Gürgan, Muazzez Afşar Erkal, Nilüfer Özgür, Ebru Gündüz, Ufuk Eroglu, Inci Yücel, Meral Int J Mol Sci Article Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C) and heat (42 °C) stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip(®). TR_RCH2a520699F). The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS) bacteria under temperature stress. MDPI 2015-06-16 /pmc/articles/PMC4490523/ /pubmed/26086826 http://dx.doi.org/10.3390/ijms160613781 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gürgan, Muazzez Afşar Erkal, Nilüfer Özgür, Ebru Gündüz, Ufuk Eroglu, Inci Yücel, Meral Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis |
title | Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis |
title_full | Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis |
title_fullStr | Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis |
title_full_unstemmed | Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis |
title_short | Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis |
title_sort | transcriptional profiling of hydrogen production metabolism of rhodobacter capsulatus under temperature stress by microarray analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490523/ https://www.ncbi.nlm.nih.gov/pubmed/26086826 http://dx.doi.org/10.3390/ijms160613781 |
work_keys_str_mv | AT gurganmuazzez transcriptionalprofilingofhydrogenproductionmetabolismofrhodobactercapsulatusundertemperaturestressbymicroarrayanalysis AT afsarerkalnilufer transcriptionalprofilingofhydrogenproductionmetabolismofrhodobactercapsulatusundertemperaturestressbymicroarrayanalysis AT ozgurebru transcriptionalprofilingofhydrogenproductionmetabolismofrhodobactercapsulatusundertemperaturestressbymicroarrayanalysis AT gunduzufuk transcriptionalprofilingofhydrogenproductionmetabolismofrhodobactercapsulatusundertemperaturestressbymicroarrayanalysis AT erogluinci transcriptionalprofilingofhydrogenproductionmetabolismofrhodobactercapsulatusundertemperaturestressbymicroarrayanalysis AT yucelmeral transcriptionalprofilingofhydrogenproductionmetabolismofrhodobactercapsulatusundertemperaturestressbymicroarrayanalysis |