Cargando…
Oligonol suppresses lipid accumulation and improves insulin resistance in a palmitate-induced in HepG2 hepatocytes as a cellular steatosis model
BACKGROUND: Oligonol is a low molecular weight form of polyphenol polymers derived from lychee fruits. Several studies suggest that Oligonol has an anti-obesity effect. Since obesity is tightly associated with insulin resistance, we investigated a possible remission effect of Oligonol on lipid accum...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490649/ https://www.ncbi.nlm.nih.gov/pubmed/26077338 http://dx.doi.org/10.1186/s12906-015-0709-1 |
Sumario: | BACKGROUND: Oligonol is a low molecular weight form of polyphenol polymers derived from lychee fruits. Several studies suggest that Oligonol has an anti-obesity effect. Since obesity is tightly associated with insulin resistance, we investigated a possible remission effect of Oligonol on lipid accumulation and insulin resistance in human hepatic HepG2 cells. METHODS: HepG2 cells were treated with palmitate for 24 h to induce cellular hepatic steatosis and insulin resistance. The cells were then treated with Oligonol at subtoxic concentrations and examined for lipid metabolism, cytokine production, and insulin signaling using quantitative RT-PCR and western blot analysis. RESULTS: Oligonol treatment reversed the palmitate-induced intracellular lipid accumulation, down regulated the expression of lipogenic genes, and up-regulated genes for fatty acid degradation. Oligonol restored insulin sensitivity, as was determined by the phosphorylation states of IRS-1. Oligonol also inhibited STAT3-SOCS3 signaling and increased AMPK phosphorylation in HepG2 cells. CONCLUSION: Oligonol treatment improved palmitate-induced cellular steatosis and insulin resistance in HepG2 cells with concomitant reduction of inflammatory cytokines and decrease in STAT3-SOCS3 and AMPK-mTOR pathways. Oligonol may have beneficial effects in lipid metabolism and insulin resistance in the liver. |
---|