Cargando…

Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease

BACKGROUND: Contrast enhanced magnetic resonance angiography (MRA) is generally performed during a long breath-hold (BH), limiting its utility in infants and small children. This study proposes a free-breathing (FB) time resolved MRA (TRA) technique for use in pediatric and adult congenital heart di...

Descripción completa

Detalles Bibliográficos
Autores principales: Steeden, Jennifer A, Pandya, Bejal, Tann, Oliver, Muthurangu, Vivek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490694/
https://www.ncbi.nlm.nih.gov/pubmed/25997552
http://dx.doi.org/10.1186/s12968-015-0138-9
_version_ 1782379554649669632
author Steeden, Jennifer A
Pandya, Bejal
Tann, Oliver
Muthurangu, Vivek
author_facet Steeden, Jennifer A
Pandya, Bejal
Tann, Oliver
Muthurangu, Vivek
author_sort Steeden, Jennifer A
collection PubMed
description BACKGROUND: Contrast enhanced magnetic resonance angiography (MRA) is generally performed during a long breath-hold (BH), limiting its utility in infants and small children. This study proposes a free-breathing (FB) time resolved MRA (TRA) technique for use in pediatric and adult congenital heart disease (CHD). METHODS: A TRA sequence was developed by combining spiral trajectories with sensitivity encoding (SENSE, x4 kx-ky and x2 kz) and partial Fourier (75% in kz). As no temporal data sharing is used, an independent 3D data set was acquired every ~1.3s, with acceptable spatial resolution (~2.3x2.3x2.3mm). The technique was tested during FB over 50 consecutive volumes. Conventional BH-MRA and FB-TRA data was acquired in 45 adults and children with CHD. We calculated quantitative image quality for both sequences. Diagnostic accuracy was assessed in all patients from both sequences. Additionally, vessel measurements were made at the sinotubular junction (N = 43), proximal descending aorta (N = 43), descending aorta at the level of the diaphragm (N = 43), main pulmonary artery (N = 35), left pulmonary artery (N = 35) and the right pulmonary artery (N = 35). Intra and inter observer variability was assessed in a subset of 10 patients. RESULTS: BH-MRA had significantly higher homogeneity in non-contrast enhancing tissue (coefficient of variance, P <0.0001), signal-to-noise ratio (P <0.0001), contrast-to-noise ratio (P <0.0001) and relative contrast (P = 0.02) compared to the FB-TRA images. However, homogeneity in the vessels was similar in both techniques (P = 0.52) and edge sharpness was significantly (P <0.0001) higher in FB-TRA compared to BH-MRA. BH-MRA provided overall diagnostic accuracy of 82%, and FB-TRA of 87%, with no statistical difference between the two sequences (P = 0.77). Vessel diameter measurements showed excellent agreement between the two techniques (r = 0.98, P <0.05), with no bias (0.0mm, P = 0.71), and clinically acceptable limits of agreement (-2.7 to +2.8mm). Inter and intra observer reproducibility showed good agreement of vessel diameters (r>0.988, P<0.0001), with negligible biases (between -0.2 and +0.1mm) and small limits of agreement (between -2.4 and +2.5mm). CONCLUSIONS: We have described a FB-TRA technique that is shown to enable accurate diagnosis and vessel measures compared to conventional BH-MRA. This simplifies the MRA technique and will enable angiography to be performed in children and adults whom find breath-holding difficult. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12968-015-0138-9) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4490694
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-44906942015-07-13 Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease Steeden, Jennifer A Pandya, Bejal Tann, Oliver Muthurangu, Vivek J Cardiovasc Magn Reson Technical Notes BACKGROUND: Contrast enhanced magnetic resonance angiography (MRA) is generally performed during a long breath-hold (BH), limiting its utility in infants and small children. This study proposes a free-breathing (FB) time resolved MRA (TRA) technique for use in pediatric and adult congenital heart disease (CHD). METHODS: A TRA sequence was developed by combining spiral trajectories with sensitivity encoding (SENSE, x4 kx-ky and x2 kz) and partial Fourier (75% in kz). As no temporal data sharing is used, an independent 3D data set was acquired every ~1.3s, with acceptable spatial resolution (~2.3x2.3x2.3mm). The technique was tested during FB over 50 consecutive volumes. Conventional BH-MRA and FB-TRA data was acquired in 45 adults and children with CHD. We calculated quantitative image quality for both sequences. Diagnostic accuracy was assessed in all patients from both sequences. Additionally, vessel measurements were made at the sinotubular junction (N = 43), proximal descending aorta (N = 43), descending aorta at the level of the diaphragm (N = 43), main pulmonary artery (N = 35), left pulmonary artery (N = 35) and the right pulmonary artery (N = 35). Intra and inter observer variability was assessed in a subset of 10 patients. RESULTS: BH-MRA had significantly higher homogeneity in non-contrast enhancing tissue (coefficient of variance, P <0.0001), signal-to-noise ratio (P <0.0001), contrast-to-noise ratio (P <0.0001) and relative contrast (P = 0.02) compared to the FB-TRA images. However, homogeneity in the vessels was similar in both techniques (P = 0.52) and edge sharpness was significantly (P <0.0001) higher in FB-TRA compared to BH-MRA. BH-MRA provided overall diagnostic accuracy of 82%, and FB-TRA of 87%, with no statistical difference between the two sequences (P = 0.77). Vessel diameter measurements showed excellent agreement between the two techniques (r = 0.98, P <0.05), with no bias (0.0mm, P = 0.71), and clinically acceptable limits of agreement (-2.7 to +2.8mm). Inter and intra observer reproducibility showed good agreement of vessel diameters (r>0.988, P<0.0001), with negligible biases (between -0.2 and +0.1mm) and small limits of agreement (between -2.4 and +2.5mm). CONCLUSIONS: We have described a FB-TRA technique that is shown to enable accurate diagnosis and vessel measures compared to conventional BH-MRA. This simplifies the MRA technique and will enable angiography to be performed in children and adults whom find breath-holding difficult. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12968-015-0138-9) contains supplementary material, which is available to authorized users. BioMed Central 2015-05-22 /pmc/articles/PMC4490694/ /pubmed/25997552 http://dx.doi.org/10.1186/s12968-015-0138-9 Text en © Steeden et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Technical Notes
Steeden, Jennifer A
Pandya, Bejal
Tann, Oliver
Muthurangu, Vivek
Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease
title Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease
title_full Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease
title_fullStr Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease
title_full_unstemmed Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease
title_short Free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease
title_sort free breathing contrast-enhanced time-resolved magnetic resonance angiography in pediatric and adult congenital heart disease
topic Technical Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490694/
https://www.ncbi.nlm.nih.gov/pubmed/25997552
http://dx.doi.org/10.1186/s12968-015-0138-9
work_keys_str_mv AT steedenjennifera freebreathingcontrastenhancedtimeresolvedmagneticresonanceangiographyinpediatricandadultcongenitalheartdisease
AT pandyabejal freebreathingcontrastenhancedtimeresolvedmagneticresonanceangiographyinpediatricandadultcongenitalheartdisease
AT tannoliver freebreathingcontrastenhancedtimeresolvedmagneticresonanceangiographyinpediatricandadultcongenitalheartdisease
AT muthuranguvivek freebreathingcontrastenhancedtimeresolvedmagneticresonanceangiographyinpediatricandadultcongenitalheartdisease