Cargando…

Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics

High-performance piezoelectricity in monolayer semiconducting transition metal dichalcogenides is highly desirable for the development of nanosensors, piezotronics and photo-piezotransistors. Here we report the experimental study of the theoretically predicted piezoelectric effect in triangle monola...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Junjie, Lan, Yann-Wen, Stieg, Adam Z., Chen, Jyun-Hong, Zhong, Yuan-Liang, Li, Lain-Jong, Chen, Chii-Dong, Zhang, Yue, Wang, Kang L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491182/
https://www.ncbi.nlm.nih.gov/pubmed/26109177
http://dx.doi.org/10.1038/ncomms8430
_version_ 1782379597040451584
author Qi, Junjie
Lan, Yann-Wen
Stieg, Adam Z.
Chen, Jyun-Hong
Zhong, Yuan-Liang
Li, Lain-Jong
Chen, Chii-Dong
Zhang, Yue
Wang, Kang L.
author_facet Qi, Junjie
Lan, Yann-Wen
Stieg, Adam Z.
Chen, Jyun-Hong
Zhong, Yuan-Liang
Li, Lain-Jong
Chen, Chii-Dong
Zhang, Yue
Wang, Kang L.
author_sort Qi, Junjie
collection PubMed
description High-performance piezoelectricity in monolayer semiconducting transition metal dichalcogenides is highly desirable for the development of nanosensors, piezotronics and photo-piezotransistors. Here we report the experimental study of the theoretically predicted piezoelectric effect in triangle monolayer MoS(2) devices under isotropic mechanical deformation. The experimental observation indicates that the conductivity of MoS(2) devices can be actively modulated by the piezoelectric charge polarization-induced built-in electric field under strain variation. These polarization charges alter the Schottky barrier height on both contacts, resulting in a barrier height increase with increasing compressive strain and decrease with increasing tensile strain. The underlying mechanism of strain-induced in-plane charge polarization is proposed and discussed using energy band diagrams. In addition, a new type of MoS(2) strain/force sensor built using a monolayer MoS(2) triangle is also demonstrated. Our results provide evidence for strain-gating monolayer MoS(2) piezotronics, a promising avenue for achieving augmented functionalities in next-generation electronic and mechanical–electronic nanodevices.
format Online
Article
Text
id pubmed-4491182
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-44911822015-07-08 Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics Qi, Junjie Lan, Yann-Wen Stieg, Adam Z. Chen, Jyun-Hong Zhong, Yuan-Liang Li, Lain-Jong Chen, Chii-Dong Zhang, Yue Wang, Kang L. Nat Commun Article High-performance piezoelectricity in monolayer semiconducting transition metal dichalcogenides is highly desirable for the development of nanosensors, piezotronics and photo-piezotransistors. Here we report the experimental study of the theoretically predicted piezoelectric effect in triangle monolayer MoS(2) devices under isotropic mechanical deformation. The experimental observation indicates that the conductivity of MoS(2) devices can be actively modulated by the piezoelectric charge polarization-induced built-in electric field under strain variation. These polarization charges alter the Schottky barrier height on both contacts, resulting in a barrier height increase with increasing compressive strain and decrease with increasing tensile strain. The underlying mechanism of strain-induced in-plane charge polarization is proposed and discussed using energy band diagrams. In addition, a new type of MoS(2) strain/force sensor built using a monolayer MoS(2) triangle is also demonstrated. Our results provide evidence for strain-gating monolayer MoS(2) piezotronics, a promising avenue for achieving augmented functionalities in next-generation electronic and mechanical–electronic nanodevices. Nature Pub. Group 2015-06-25 /pmc/articles/PMC4491182/ /pubmed/26109177 http://dx.doi.org/10.1038/ncomms8430 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Qi, Junjie
Lan, Yann-Wen
Stieg, Adam Z.
Chen, Jyun-Hong
Zhong, Yuan-Liang
Li, Lain-Jong
Chen, Chii-Dong
Zhang, Yue
Wang, Kang L.
Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics
title Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics
title_full Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics
title_fullStr Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics
title_full_unstemmed Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics
title_short Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics
title_sort piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491182/
https://www.ncbi.nlm.nih.gov/pubmed/26109177
http://dx.doi.org/10.1038/ncomms8430
work_keys_str_mv AT qijunjie piezoelectriceffectinchemicalvapourdepositiongrownatomicmonolayertriangularmolybdenumdisulfidepiezotronics
AT lanyannwen piezoelectriceffectinchemicalvapourdepositiongrownatomicmonolayertriangularmolybdenumdisulfidepiezotronics
AT stiegadamz piezoelectriceffectinchemicalvapourdepositiongrownatomicmonolayertriangularmolybdenumdisulfidepiezotronics
AT chenjyunhong piezoelectriceffectinchemicalvapourdepositiongrownatomicmonolayertriangularmolybdenumdisulfidepiezotronics
AT zhongyuanliang piezoelectriceffectinchemicalvapourdepositiongrownatomicmonolayertriangularmolybdenumdisulfidepiezotronics
AT lilainjong piezoelectriceffectinchemicalvapourdepositiongrownatomicmonolayertriangularmolybdenumdisulfidepiezotronics
AT chenchiidong piezoelectriceffectinchemicalvapourdepositiongrownatomicmonolayertriangularmolybdenumdisulfidepiezotronics
AT zhangyue piezoelectriceffectinchemicalvapourdepositiongrownatomicmonolayertriangularmolybdenumdisulfidepiezotronics
AT wangkangl piezoelectriceffectinchemicalvapourdepositiongrownatomicmonolayertriangularmolybdenumdisulfidepiezotronics