Cargando…

DNA methylation regulates sclerostin (SOST) expression in osteoarthritic chondrocytes by bone morphogenetic protein 2 (BMP-2) induced changes in Smads binding affinity to the CpG region of SOST promoter

INTRODUCTION: Sclerostin (SOST), a soluble antagonist of Wnt signaling, is expressed in chondrocytes and contributes to chondrocytes’ hypertrophic differentiation; however its role in osteoarthritis (OA) pathogenesis is not well known. Based on our previous findings on the interaction between Wnt/β-...

Descripción completa

Detalles Bibliográficos
Autores principales: Papathanasiou, Ioanna, Kostopoulou, Fotini, Malizos, Konstantinos N., Tsezou, Aspasia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491261/
https://www.ncbi.nlm.nih.gov/pubmed/26071314
http://dx.doi.org/10.1186/s13075-015-0674-6
Descripción
Sumario:INTRODUCTION: Sclerostin (SOST), a soluble antagonist of Wnt signaling, is expressed in chondrocytes and contributes to chondrocytes’ hypertrophic differentiation; however its role in osteoarthritis (OA) pathogenesis is not well known. Based on our previous findings on the interaction between Wnt/β-catenin pathway and BMP-2 in OA, we aimed to investigate the role of DNA methylation and BMP-2 on SOST’s expression in OA chondrocytes. METHODS: SOST mRNA and protein expression levels were investigated using real-time polymerase chain reaction (PCR) and Western blot, respectively. The methylation status of SOST promoter was analysed using methylation-specific PCR (MSP), quantitative methylation-specific PCR (qMSP) and bisulfite sequencing analysis. The effect of BMP-2 and 5’-Aza-2-deoxycytidine (5-AzadC) on SOST’s expression levels were investigated and Smad1/5/8 binding to SOST promoter was assessed by Chromatin Immunoprecipitation (ChΙP). RESULTS: We observed that SOST’s expression was upregulated in OA chondrocytes compared to normal. Moreover, we found that the CpG region of SOST promoter was hypomethylated in OA chondrocytes and 5-AzadC treatment in normal chondrocytes resulted in decreased SOST methylation, whereas its expression was upregulated. BMP-2 treatment in 5-AzadC-treated normal chondrocytes resulted in SOST upregulation, which was mediated through Smad 1/5/8 binding on the CpG region of SOST promoter. CONCLUSIONS: We report novel findings that DNA methylation regulates SOST’s expression in OA, by changing Smad 1/5/8 binding affinity to SOST promoter, providing evidence that changes in DNA methylation pattern could underlie changes in genes’ expression observed in OA.