Cargando…

Bone Fracture Risk is Not Associated with the Use of Glucagon-Like Peptide-1 Receptor Agonists: A Population-Based Cohort Analysis

Glucagon-like Peptide-1 receptor agonists (GLP1-ra) are a relatively new class of anti-hyperglycemic drugs which may positively affect bone metabolism and thereby decrease (osteoporotic) bone fracture risk. Data on the effect of GLP1-ra on fracture risk are scarce and limited to clinical trial data...

Descripción completa

Detalles Bibliográficos
Autores principales: Driessen, Johanna H. M., Henry, Ronald M. A., van Onzenoort, Hein A. W., Lalmohamed, Arief, Burden, Andrea M., Prieto-Alhambra, Daniel, Neef, Cees, Leufkens, Hubert G. M., de Vries, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491344/
https://www.ncbi.nlm.nih.gov/pubmed/25894068
http://dx.doi.org/10.1007/s00223-015-9993-5
Descripción
Sumario:Glucagon-like Peptide-1 receptor agonists (GLP1-ra) are a relatively new class of anti-hyperglycemic drugs which may positively affect bone metabolism and thereby decrease (osteoporotic) bone fracture risk. Data on the effect of GLP1-ra on fracture risk are scarce and limited to clinical trial data only. The aim of this study was to investigate, in a population-based cohort, the association between the use of GLP1-ra and bone fracture risk. We conducted a population-based cohort study, with the use of data from the Clinical Practice Research Datalink (CPRD) database (2007–2012). The study population (N = 216,816) consisted of all individuals with type 2 diabetes patients with at least one prescription for a non-insulin anti-diabetic drug and were over 18 years of age. Cox proportional hazards models were used to estimate the hazard ratio of fracture in GLP1-ra users versus never-GLP1-ra users. Time-dependent adjustments were made for age, sex, lifestyle, comorbidity and the use of other drugs. There was no decreased risk of fracture with current use of GLP1-ra compared to never-GLP1-ra use (adjusted HR 0.99, 95 % CI 0.82–1.19). Osteoporotic fracture risk was also not decreased by current GLP1-ra use (adjusted HR 0.97; 95 % CI 0.72–1.32). In addition, stratification according to cumulative dose did not show a decreased bone fracture risk with increasing cumulative GLP1-ra dose. We showed in a population-based cohort study that GLP1-ra use is not associated with a decreased bone fracture risk compared to users of other anti-hyperglycemic drugs. Future research is needed to elucidate the potential working mechanisms of GLP1-ra on bone.