Cargando…
Tulane virus recognizes sialic acids as cellular receptors
The recent discovery that human noroviruses (huNoVs) recognize sialic acids (SAs) in addition to histo-blood group antigens (HBGAs) pointed to a new direction in studying virus-host interactions during calicivirus infection. HuNoVs remain difficult to study due to the lack of an effective cell cultu...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491846/ https://www.ncbi.nlm.nih.gov/pubmed/26146020 http://dx.doi.org/10.1038/srep11784 |
Sumario: | The recent discovery that human noroviruses (huNoVs) recognize sialic acids (SAs) in addition to histo-blood group antigens (HBGAs) pointed to a new direction in studying virus-host interactions during calicivirus infection. HuNoVs remain difficult to study due to the lack of an effective cell culture model. In this study, we demonstrated that Tulane virus (TV), a cultivable primate calicivirus, also recognizes SAs in addition to the previously known TV-HBGA interactions. Evidence supporting this discovery includes that TV virions bound synthetic sialoglycoconjugates (SGCs) and that treatment of TV permissive LLC-MK2 cells with either neuraminidases or SA-binding lectins inhibited TV infectivity. In addition, we found that Maackia amurensis leukoagglutinin (MAL), a lectin that recognizes the α-2,3 linked SAs, bound LLC-MK2 cells, as well as TV, by which MAL promoted TV infectivity in cell culture. Our findings further highlight TV as a valuable surrogate for huNoVs, particularly in studying virus-host interactions that may involve two host carbohydrate receptors or co-receptors for infection. |
---|