Cargando…

The unifrac significance test is sensitive to tree topology

Long et al. (BMC Bioinformatics 2014, 15(1):278) describe a “discrepancy” in using UniFrac to assess statistical significance of community differences. Specifically, they find that weighted UniFrac results differ between input trees where (a) replicate sequences each have their own tip, or (b) all r...

Descripción completa

Detalles Bibliográficos
Autores principales: Lozupone, Catherine A., Knight, Rob
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492014/
https://www.ncbi.nlm.nih.gov/pubmed/26150095
http://dx.doi.org/10.1186/s12859-015-0640-y
Descripción
Sumario:Long et al. (BMC Bioinformatics 2014, 15(1):278) describe a “discrepancy” in using UniFrac to assess statistical significance of community differences. Specifically, they find that weighted UniFrac results differ between input trees where (a) replicate sequences each have their own tip, or (b) all replicates are assigned to one tip with an associated count. We argue that these are two distinct cases that differ in the probability distribution on which the statistical test is based, because of the differences in tree topology. Further study is needed to understand which randomization procedure best detects different aspects of community dissimilarities.