Cargando…
Spatiotemporal dynamics of the postnatal developing primate brain transcriptome
Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492396/ https://www.ncbi.nlm.nih.gov/pubmed/25954031 http://dx.doi.org/10.1093/hmg/ddv166 |
_version_ | 1782379770117357568 |
---|---|
author | Bakken, Trygve E. Miller, Jeremy A. Luo, Rui Bernard, Amy Bennett, Jeffrey L. Lee, Chang-Kyu Bertagnolli, Darren Parikshak, Neelroop N. Smith, Kimberly A. Sunkin, Susan M. Amaral, David G. Geschwind, Daniel H. Lein, Ed S. |
author_facet | Bakken, Trygve E. Miller, Jeremy A. Luo, Rui Bernard, Amy Bennett, Jeffrey L. Lee, Chang-Kyu Bertagnolli, Darren Parikshak, Neelroop N. Smith, Kimberly A. Sunkin, Susan M. Amaral, David G. Geschwind, Daniel H. Lein, Ed S. |
author_sort | Bakken, Trygve E. |
collection | PubMed |
description | Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD. |
format | Online Article Text |
id | pubmed-4492396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-44923962015-07-08 Spatiotemporal dynamics of the postnatal developing primate brain transcriptome Bakken, Trygve E. Miller, Jeremy A. Luo, Rui Bernard, Amy Bennett, Jeffrey L. Lee, Chang-Kyu Bertagnolli, Darren Parikshak, Neelroop N. Smith, Kimberly A. Sunkin, Susan M. Amaral, David G. Geschwind, Daniel H. Lein, Ed S. Hum Mol Genet Articles Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD. Oxford University Press 2015-08-01 2015-05-07 /pmc/articles/PMC4492396/ /pubmed/25954031 http://dx.doi.org/10.1093/hmg/ddv166 Text en © The Author 2015. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Bakken, Trygve E. Miller, Jeremy A. Luo, Rui Bernard, Amy Bennett, Jeffrey L. Lee, Chang-Kyu Bertagnolli, Darren Parikshak, Neelroop N. Smith, Kimberly A. Sunkin, Susan M. Amaral, David G. Geschwind, Daniel H. Lein, Ed S. Spatiotemporal dynamics of the postnatal developing primate brain transcriptome |
title | Spatiotemporal dynamics of the postnatal developing primate brain transcriptome |
title_full | Spatiotemporal dynamics of the postnatal developing primate brain transcriptome |
title_fullStr | Spatiotemporal dynamics of the postnatal developing primate brain transcriptome |
title_full_unstemmed | Spatiotemporal dynamics of the postnatal developing primate brain transcriptome |
title_short | Spatiotemporal dynamics of the postnatal developing primate brain transcriptome |
title_sort | spatiotemporal dynamics of the postnatal developing primate brain transcriptome |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492396/ https://www.ncbi.nlm.nih.gov/pubmed/25954031 http://dx.doi.org/10.1093/hmg/ddv166 |
work_keys_str_mv | AT bakkentrygvee spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT millerjeremya spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT luorui spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT bernardamy spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT bennettjeffreyl spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT leechangkyu spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT bertagnollidarren spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT parikshakneelroopn spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT smithkimberlya spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT sunkinsusanm spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT amaraldavidg spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT geschwinddanielh spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome AT leineds spatiotemporaldynamicsofthepostnataldevelopingprimatebraintranscriptome |