Cargando…
Jointly Learning Multiple Sequential Dynamics for Human Action Recognition
Discovering visual dynamics during human actions is a challenging task for human action recognition. To deal with this problem, we theoretically propose the multi-task conditional random fields model and explore its application on human action recognition. For visual representation, we propose the p...
Autores principales: | Liu, An-An, Su, Yu-Ting, Nie, Wei-Zhi, Yang, Zhao-Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493153/ https://www.ncbi.nlm.nih.gov/pubmed/26147979 http://dx.doi.org/10.1371/journal.pone.0130884 |
Ejemplares similares
-
Sequential aiming in pairs: the multiple levels of joint action
por: Roberts, James W., et al.
Publicado: (2021) -
Learning joints relation graphs for video action recognition
por: Liu, Xiaodong, et al.
Publicado: (2022) -
Multiple Frames of Reference Are Used During the Selection and Planning of a Sequential Joint Action
por: Ray, Matthew, et al.
Publicado: (2018) -
Predictive Movements and Human Reinforcement Learning of Sequential Action
por: de Kleijn, Roy, et al.
Publicado: (2018) -
Sequential methods in pattern recognition and machine learning
por: Fu King Sun
Publicado: (1968)