Cargando…

A Rare Case of Congenital Diabetes Insipidus

Congenital nephrogenic diabetes insipidus (NDI) is a conformation disease resulting from protein misfolding. Ninety percent of mutations result from the inactivating mutations of the arginine vasopressin receptor 2 (AVPR2) gene transmitted in an X-linked fashion, blocking the response to vasopressin...

Descripción completa

Detalles Bibliográficos
Autores principales: Rege, Tanvi, Polsani, Srujana, Jim, Belinda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493400/
https://www.ncbi.nlm.nih.gov/pubmed/26217664
http://dx.doi.org/10.3389/fmed.2015.00043
Descripción
Sumario:Congenital nephrogenic diabetes insipidus (NDI) is a conformation disease resulting from protein misfolding. Ninety percent of mutations result from the inactivating mutations of the arginine vasopressin receptor 2 (AVPR2) gene transmitted in an X-linked fashion, blocking the response to vasopressin, resulting in the inability to concentrate urine. Clinical features include polyuria, polydispsia, dehydration, and hypernatremia. They are generally more severely in affected males but present variably in females due to skewed inactivation of the X chromosome. We describe a case of a 40-year-old woman with a history of Type 2 diabetes mellitus, hyperlipidemia, and obesity, who presents with debilitating polyuria since the age of 5 with no clear diagnosis. Interestingly, her son was diagnosed with NDI. Genetic testing revealed that she was heterozygous for the Val88Met mutation in the AVPR2 gene while her son was hemizygous for the same. The patient has since been successfully treated with diuretics and a low solute diet. We highlight that although X-linked NDI patients are mostly males, it should be considered in symptomatic females to prevent delays in the diagnosis. Conformational diseases such as NDI are presently the subject of research using pharmacological chaperones to restore proper receptor membrane localization and function.