Cargando…

Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data

Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of ‘gold standard’ tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Bermingham, Mairead L., Handel, Ian G., Glass, Elizabeth J., Woolliams, John A., Bronsvoort, B. Mark de Clare, McBride, Stewart H., Skuce, Robin A., Allen, Adrian R., McDowell, Stanley W. J., Bishop, Stephen C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493568/
https://www.ncbi.nlm.nih.gov/pubmed/26148538
http://dx.doi.org/10.1038/srep11861
_version_ 1782379943189020672
author Bermingham, Mairead L.
Handel, Ian G.
Glass, Elizabeth J.
Woolliams, John A.
Bronsvoort, B. Mark de Clare
McBride, Stewart H.
Skuce, Robin A.
Allen, Adrian R.
McDowell, Stanley W. J.
Bishop, Stephen C.
author_facet Bermingham, Mairead L.
Handel, Ian G.
Glass, Elizabeth J.
Woolliams, John A.
Bronsvoort, B. Mark de Clare
McBride, Stewart H.
Skuce, Robin A.
Allen, Adrian R.
McDowell, Stanley W. J.
Bishop, Stephen C.
author_sort Bermingham, Mairead L.
collection PubMed
description Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of ‘gold standard’ tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies.
format Online
Article
Text
id pubmed-4493568
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-44935682015-07-09 Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data Bermingham, Mairead L. Handel, Ian G. Glass, Elizabeth J. Woolliams, John A. Bronsvoort, B. Mark de Clare McBride, Stewart H. Skuce, Robin A. Allen, Adrian R. McDowell, Stanley W. J. Bishop, Stephen C. Sci Rep Article Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of ‘gold standard’ tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies. Nature Publishing Group 2015-07-07 /pmc/articles/PMC4493568/ /pubmed/26148538 http://dx.doi.org/10.1038/srep11861 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Bermingham, Mairead L.
Handel, Ian G.
Glass, Elizabeth J.
Woolliams, John A.
Bronsvoort, B. Mark de Clare
McBride, Stewart H.
Skuce, Robin A.
Allen, Adrian R.
McDowell, Stanley W. J.
Bishop, Stephen C.
Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
title Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
title_full Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
title_fullStr Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
title_full_unstemmed Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
title_short Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
title_sort hui and walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493568/
https://www.ncbi.nlm.nih.gov/pubmed/26148538
http://dx.doi.org/10.1038/srep11861
work_keys_str_mv AT berminghammaireadl huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata
AT handeliang huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata
AT glasselizabethj huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata
AT woolliamsjohna huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata
AT bronsvoortbmarkdeclare huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata
AT mcbridestewarth huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata
AT skucerobina huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata
AT allenadrianr huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata
AT mcdowellstanleywj huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata
AT bishopstephenc huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata