Cargando…
Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of ‘gold standard’ tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the c...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493568/ https://www.ncbi.nlm.nih.gov/pubmed/26148538 http://dx.doi.org/10.1038/srep11861 |
_version_ | 1782379943189020672 |
---|---|
author | Bermingham, Mairead L. Handel, Ian G. Glass, Elizabeth J. Woolliams, John A. Bronsvoort, B. Mark de Clare McBride, Stewart H. Skuce, Robin A. Allen, Adrian R. McDowell, Stanley W. J. Bishop, Stephen C. |
author_facet | Bermingham, Mairead L. Handel, Ian G. Glass, Elizabeth J. Woolliams, John A. Bronsvoort, B. Mark de Clare McBride, Stewart H. Skuce, Robin A. Allen, Adrian R. McDowell, Stanley W. J. Bishop, Stephen C. |
author_sort | Bermingham, Mairead L. |
collection | PubMed |
description | Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of ‘gold standard’ tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies. |
format | Online Article Text |
id | pubmed-4493568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-44935682015-07-09 Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data Bermingham, Mairead L. Handel, Ian G. Glass, Elizabeth J. Woolliams, John A. Bronsvoort, B. Mark de Clare McBride, Stewart H. Skuce, Robin A. Allen, Adrian R. McDowell, Stanley W. J. Bishop, Stephen C. Sci Rep Article Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of ‘gold standard’ tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies. Nature Publishing Group 2015-07-07 /pmc/articles/PMC4493568/ /pubmed/26148538 http://dx.doi.org/10.1038/srep11861 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Bermingham, Mairead L. Handel, Ian G. Glass, Elizabeth J. Woolliams, John A. Bronsvoort, B. Mark de Clare McBride, Stewart H. Skuce, Robin A. Allen, Adrian R. McDowell, Stanley W. J. Bishop, Stephen C. Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data |
title | Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data |
title_full | Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data |
title_fullStr | Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data |
title_full_unstemmed | Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data |
title_short | Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data |
title_sort | hui and walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493568/ https://www.ncbi.nlm.nih.gov/pubmed/26148538 http://dx.doi.org/10.1038/srep11861 |
work_keys_str_mv | AT berminghammaireadl huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata AT handeliang huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata AT glasselizabethj huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata AT woolliamsjohna huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata AT bronsvoortbmarkdeclare huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata AT mcbridestewarth huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata AT skucerobina huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata AT allenadrianr huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata AT mcdowellstanleywj huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata AT bishopstephenc huiandwalterslatentclassmodelextendedtoestimatediagnostictestpropertiesfromsurveillancedataalatentmodelforlatentdata |