Cargando…
miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis
Multiple symmetric lipomatosis (MSL) is a rare disease characterized by symmetric and abnormal distribution of subcutaneous adipose tissue (SAT); however, the etiology is largely unknown. We report here that miR-125a-3p and miR-483-5p are upregulated in the SAT of MSL patients, promoting adipogenesi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493643/ https://www.ncbi.nlm.nih.gov/pubmed/26148871 http://dx.doi.org/10.1038/srep11909 |
Sumario: | Multiple symmetric lipomatosis (MSL) is a rare disease characterized by symmetric and abnormal distribution of subcutaneous adipose tissue (SAT); however, the etiology is largely unknown. We report here that miR-125a-3p and miR-483-5p are upregulated in the SAT of MSL patients, promoting adipogenesis through suppressing the RhoA/ROCK1/ERK1/2 pathway. TaqMan microRNA (miR) array analysis revealed that 18 miRs were upregulated in the SAT of MSL patients. Transfection of human adipose-derived mesenchymal stem cells (hADSCs) with the individual agomirs of these 18 miRs showed that miR-125a-3p and miR-483-5p significantly promoted adipogenesis. A dual-luciferase assay showed that RhoA and ERK1 were the targets of miR-125a-3p and miR-483-5p, respectively. Moreover, transfection of hADSCs with mimics of miR-125a-3p and miR-483-5p resulted in a pronounced decrease of ERK1/2 phosphorylation in the nucleus; conversely, transfection of hADSCs with inhibitors of miR-125a-3p and miR-483-5p led to a significant increase of ERK1/2 phosphorylation in the nucleus. Most importantly, we found that miR-125a-3p and miR-483-5p promoted de novo adipose tissue formation in nude mice. These results demonstrated that miR-125a-3p and miR-483-5p coordinately promoted adipogenesis through suppressing the RhoA/ROCK1/ERK1/2 pathway. Our findings may provide novel strategies for the management and treatment of MSL or obesity. |
---|