Cargando…
Multi-level machine learning prediction of protein–protein interactions in Saccharomyces cerevisiae
Accurate identification of protein–protein interactions (PPI) is the key step in understanding proteins’ biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information...
Autores principales: | Zubek, Julian, Tatjewski, Marcin, Boniecki, Adam, Mnich, Maciej, Basu, Subhadip, Plewczynski, Dariusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493684/ https://www.ncbi.nlm.nih.gov/pubmed/26157620 http://dx.doi.org/10.7717/peerj.1041 |
Ejemplares similares
-
FunPred 3.0: improved protein function prediction using protein interaction network
por: Saha, Sovan, et al.
Publicado: (2019) -
ShapeGTB: the role of local DNA shape in prioritization of functional variants in human promoters with machine learning
por: Malkowska, Maja, et al.
Publicado: (2018) -
Computational inference of H3K4me3 and H3K27ac domain length
por: Zubek, Julian, et al.
Publicado: (2016) -
Detection of spreader nodes in human-SARS-CoV protein-protein interaction network
por: Saha, Sovan, et al.
Publicado: (2021) -
PDP-CON: prediction of domain/linker residues in protein sequences using a consensus approach
por: Chatterjee, Piyali, et al.
Publicado: (2016)