Cargando…
Efficient Estimation of Smooth Distributions From Coarsely Grouped Data
Ungrouping binned data can be desirable for many reasons: Bins can be too coarse to allow for accurate analysis; comparisons can be hindered when different grouping approaches are used in different histograms; and the last interval is often wide and open-ended and, thus, covers a lot of information...
Autores principales: | Rizzi, Silvia, Gampe, Jutta, Eilers, Paul H. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493979/ https://www.ncbi.nlm.nih.gov/pubmed/26081676 http://dx.doi.org/10.1093/aje/kwv020 |
Ejemplares similares
-
RE: “EFFICIENT ESTIMATION OF SMOOTH DISTRIBUTIONS FROM COARSELY GROUPED DATA”
Publicado: (2017) -
Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators
por: Pierce, Brandon L., et al.
Publicado: (2013) -
Assessing Network Scale-up Estimates for Groups Most at Risk of HIV/AIDS: Evidence From a Multiple-Method Study of Heavy Drug Users in Curitiba, Brazil
por: Salganik, Matthew J., et al.
Publicado: (2011) -
A New Method for Estimating the Coverage of Mass Vaccination Campaigns Against Poliomyelitis From Surveillance Data
por: O'Reilly, K. M., et al.
Publicado: (2015) -
The M-Value: A Simple Sensitivity Analysis for Bias Due to Missing Data in Treatment Effect Estimates
por: Mathur, Maya B
Publicado: (2022)