Cargando…
Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection
We report on the use of soft UV nanoimprint lithography (UV-NIL) for the development of reproducible, millimeter-sized, and sensitive substrates for SERS detection. The used geometry for plasmonic nanostructures is the cylinder. Gold nanocylinders (GNCs) showed to be very sensitive and specific sens...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494019/ https://www.ncbi.nlm.nih.gov/pubmed/26089008 http://dx.doi.org/10.1186/1556-276X-9-623 |
Sumario: | We report on the use of soft UV nanoimprint lithography (UV-NIL) for the development of reproducible, millimeter-sized, and sensitive substrates for SERS detection. The used geometry for plasmonic nanostructures is the cylinder. Gold nanocylinders (GNCs) showed to be very sensitive and specific sensing surfaces. Indeed, we demonstrated that less than 4 ×10(6) avidin molecules were detected and contributed to the surface-enhanced Raman scattering (SERS) signal. Thus, the soft UV-NIL technique allows to obtain quickly very sensitive substrates for SERS biosensing on surfaces of 1 mm (2). |
---|