Cargando…

Developing Combined HIV Vaccine Strategies for a Functional Cure

Increasing numbers of HIV-infected individuals have access to potent antiretroviral drugs that control viral replication and decrease the risk of transmission. However, there is no cure for HIV and new strategies have to be developed to reach an eradication of the virus or a natural control of viral...

Descripción completa

Detalles Bibliográficos
Autores principales: Noto, Alessandra, Trautmann, Lydie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494210/
https://www.ncbi.nlm.nih.gov/pubmed/26344343
http://dx.doi.org/10.3390/vaccines1040481
Descripción
Sumario:Increasing numbers of HIV-infected individuals have access to potent antiretroviral drugs that control viral replication and decrease the risk of transmission. However, there is no cure for HIV and new strategies have to be developed to reach an eradication of the virus or a natural control of viral replication in the absence of drugs (functional cure). Therapeutic vaccines against HIV have been evaluated in many trials over the last 20 years and important knowledge has been gained from these trials. However, the major obstacle to HIV eradication is the persistence of latent proviral reservoirs. Different molecules are currently tested in ART-treated subjects to reactivate these latent reservoirs. Such anti-latency agents should be combined with a vaccination regimen in order to control or eradicate reactivated latently-infected cells. New in vitro assays should also be developed to assess the success of tested therapeutic vaccines by measuring the immune-mediated killing of replication-competent HIV reservoir cells. This review provides an overview of the current strategies to combine HIV vaccines with anti-latency agents that could act as adjuvant on the vaccine-induced immune response as well as new tools to assess the efficacy of these approaches.