Cargando…
Prediction of O-glycosylation Sites Using Random Forest and GA-Tuned PSO Technique
O-glycosylation is one of the main types of the mammalian protein glycosylation; it occurs on the particular site of serine (S) or threonine (T). Several O-glycosylation site predictors have been developed. However, a need to get even better prediction tools remains. One challenge in training the cl...
Autores principales: | Hassan, Hebatallah, Badr, Amr, Abdelhalim, MB |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494626/ https://www.ncbi.nlm.nih.gov/pubmed/26244014 http://dx.doi.org/10.4137/BBI.S26864 |
Ejemplares similares
-
Prediction of glycosylation sites using random forests
por: Hamby, Stephen E, et al.
Publicado: (2008) -
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method
por: Balyan, Amit Kumar, et al.
Publicado: (2022) -
Self-Tuning Control of Manipulator Positioning Based on Fuzzy PID and PSO Algorithm
por: Liu, Ying, et al.
Publicado: (2022) -
Feasibility of ANFIS-PSO and ANFIS-GA Models in Predicting Thermophysical Properties of Al(2)O(3)-MWCNT/Oil Hybrid Nanofluid
por: Alarifi, Ibrahim M., et al.
Publicado: (2019) -
Therapy of PsO in Special Subsets of Patients
por: Di Cesare, Antonella, et al.
Publicado: (2022)