Cargando…

Identification of a novel TGF-β-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis

Transforming growth factor-β (TGF-β) is a potent cytokine that promotes the development of fibrogenic cells, stimulates the expression of fibrosis-related genes, and consequently results in hepatic fibrogenesis. The involvement of miRNAs in this process remains largely unknown. We showed that miR-12...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Chunxian, Wang, Yun-Long, Xie, Chen, Sang, Ye, Li, Tuan-Jie, Zhang, Min, Wang, Ruizhi, Zhang, Qi, Zheng, Limin, Zhuang, Shi-Mei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494934/
https://www.ncbi.nlm.nih.gov/pubmed/25909171
Descripción
Sumario:Transforming growth factor-β (TGF-β) is a potent cytokine that promotes the development of fibrogenic cells, stimulates the expression of fibrosis-related genes, and consequently results in hepatic fibrogenesis. The involvement of miRNAs in this process remains largely unknown. We showed that miR-122 was substantially expressed in hepatic stellate cells (HSCs) and fibroblasts, the major sources of fibrogenic cells in liver tissues. Notably, exposure to TGF-β led to significant downregulation of miR-122. Furthermore, reintroduction of miR-122 suppressed TGF-β-induced expression of fibrosis-related genes, including alpha smooth muscle actin (α-SMA), fibronectin 1 (FN1) and α1 type I collagen (COL1A1), in HSCs and fibroblasts. Subsequent mechanism investigations revealed that miR-122 directly inhibited FN1 expression by binding to its 3′-untranslated region and indirectly reduced the transcription of α-SMA and COL1A1 by inhibiting the expression of serum response factor (SRF), a key transcription factor that mediated the activation of fibrogenic cells. Further in vivo studies disclosed that intravenous injection of miR-122-expressing lentivirus successfully increased miR-122 level and reduced the amount of collagen fibrils, FN1 and SRF in the livers of CCl(4)-treated mice. These findings disclose a novel TGF-β-miR-122-FN1/SRF signaling cascade and its implication in hepatic fibrogenesis, and suggest miR-122 as a promising molecular target for anti-fibrosis therapy.