Cargando…

A new experimental phase diagram investigation of Cu–Sb

ABSTRACT: The binary system Cu–Sb is a constituent system that is studied in investigations of technically important ternary and quaternary alloy systems (e.g., casting alloys and lead-free solders). Although this binary system has been thoroughly investigated over the last century, there are still...

Descripción completa

Detalles Bibliográficos
Autores principales: Fürtauer, Siegfried, Flandorfer, Hans
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495028/
https://www.ncbi.nlm.nih.gov/pubmed/26166872
http://dx.doi.org/10.1007/s00706-012-0737-1
Descripción
Sumario:ABSTRACT: The binary system Cu–Sb is a constituent system that is studied in investigations of technically important ternary and quaternary alloy systems (e.g., casting alloys and lead-free solders). Although this binary system has been thoroughly investigated over the last century, there are still some uncertainties regarding its high-temperature phases. Thus, parts of its phase diagram have been drawn with dashed lines in reviews published in the literature. The aim of this work was to resolve these uncertainties in the current phase diagram of Cu–Sb by performing XRD, SEM-EDX, EPMA, and DTA. The results from thermal analysis agreed well with those given in the literature, although some modifications due to the invariant reaction temperatures were necessary. In particular, reactions located on the Cu-rich side of the nonquenchable high-temperature β phase (BiF(3)-type) left considerable scope for interpretation. Generally, the structural descriptions of the various binary phases given in the literature were verified. The range of homogeneity of the ε phase (Cu(3)Ti type) was found to be higher on the Sb-rich side. Most of the reaction temperatures were verified, but a few had to be revised, such as the eutectoid reaction [Formula: see text] at 440 °C (found to occur at 427 °C in this work) and the eutectoid reaction [Formula: see text] at 400 °C (found to occur at 440 °C in this work). Further phase transformations that had previously only been estimated were confirmed, and their characteristic temperatures were determined. GRAPHICAL ABSTRACT: [Image: see text]