Cargando…
Undersampled MR Image Reconstruction with Data-Driven Tight Frame
Undersampled magnetic resonance image reconstruction employing sparsity regularization has fascinated many researchers in recent years under the support of compressed sensing theory. Nevertheless, most existing sparsity-regularized reconstruction methods either lack adaptability to capture the struc...
Autores principales: | Liu, Jianbo, Wang, Shanshan, Peng, Xi, Liang, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495234/ https://www.ncbi.nlm.nih.gov/pubmed/26199641 http://dx.doi.org/10.1155/2015/424087 |
Ejemplares similares
-
Two-Layer Tight Frame Sparsifying Model for Compressed Sensing Magnetic Resonance Imaging
por: Wang, Shanshan, et al.
Publicado: (2016) -
Complexities of deep learning-based undersampled MR image reconstruction
por: Noordman, Constant Richard, et al.
Publicado: (2023) -
Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior
por: Zhao, Di, et al.
Publicado: (2021) -
MR image reconstruction from undersampled data for image-guided radiation therapy using a patient-specific deep manifold image prior
por: Grandinetti, Jace, et al.
Publicado: (2022) -
Spatially-segmented undersampled MRI temperature reconstruction for transcranial MR-guided focused ultrasound
por: Gaur, Pooja, et al.
Publicado: (2017)