Cargando…
Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities
Mechanical properties are of central importance to materials sciences, in particular if they depend on external stimuli. Here we investigate the rheological response of amorphous solids, namely colloidal glasses, to external forces. Using confocal microscopy and computer simulations, we establish a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495392/ https://www.ncbi.nlm.nih.gov/pubmed/26153523 http://dx.doi.org/10.1038/srep11884 |
_version_ | 1782380246579806208 |
---|---|
author | Sentjabrskaja, T. Chaudhuri, P. Hermes, M. Poon, W. C. K. Horbach, J. Egelhaaf, S. U. Laurati, M. |
author_facet | Sentjabrskaja, T. Chaudhuri, P. Hermes, M. Poon, W. C. K. Horbach, J. Egelhaaf, S. U. Laurati, M. |
author_sort | Sentjabrskaja, T. |
collection | PubMed |
description | Mechanical properties are of central importance to materials sciences, in particular if they depend on external stimuli. Here we investigate the rheological response of amorphous solids, namely colloidal glasses, to external forces. Using confocal microscopy and computer simulations, we establish a quantitative link between the macroscopic creep response and the microscopic single-particle dynamics. We observe dynamical heterogeneities, namely regions of enhanced mobility, which remain localized in the creep regime, but grow for applied stresses leading to steady flow. These different behaviors are also reflected in the average particle dynamics, quantified by the mean squared displacement of the individual particles, and the fraction of active regions. Both microscopic quantities are found to be proportional to the macroscopic strain, despite the non-equilibrium and non-linear conditions during creep and the transient regime prior to steady flow. |
format | Online Article Text |
id | pubmed-4495392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-44953922015-07-13 Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities Sentjabrskaja, T. Chaudhuri, P. Hermes, M. Poon, W. C. K. Horbach, J. Egelhaaf, S. U. Laurati, M. Sci Rep Article Mechanical properties are of central importance to materials sciences, in particular if they depend on external stimuli. Here we investigate the rheological response of amorphous solids, namely colloidal glasses, to external forces. Using confocal microscopy and computer simulations, we establish a quantitative link between the macroscopic creep response and the microscopic single-particle dynamics. We observe dynamical heterogeneities, namely regions of enhanced mobility, which remain localized in the creep regime, but grow for applied stresses leading to steady flow. These different behaviors are also reflected in the average particle dynamics, quantified by the mean squared displacement of the individual particles, and the fraction of active regions. Both microscopic quantities are found to be proportional to the macroscopic strain, despite the non-equilibrium and non-linear conditions during creep and the transient regime prior to steady flow. Nature Publishing Group 2015-07-08 /pmc/articles/PMC4495392/ /pubmed/26153523 http://dx.doi.org/10.1038/srep11884 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Sentjabrskaja, T. Chaudhuri, P. Hermes, M. Poon, W. C. K. Horbach, J. Egelhaaf, S. U. Laurati, M. Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities |
title | Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities |
title_full | Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities |
title_fullStr | Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities |
title_full_unstemmed | Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities |
title_short | Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities |
title_sort | creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495392/ https://www.ncbi.nlm.nih.gov/pubmed/26153523 http://dx.doi.org/10.1038/srep11884 |
work_keys_str_mv | AT sentjabrskajat creepandflowofglassesstrainresponselinkedtothespatialdistributionofdynamicalheterogeneities AT chaudhurip creepandflowofglassesstrainresponselinkedtothespatialdistributionofdynamicalheterogeneities AT hermesm creepandflowofglassesstrainresponselinkedtothespatialdistributionofdynamicalheterogeneities AT poonwck creepandflowofglassesstrainresponselinkedtothespatialdistributionofdynamicalheterogeneities AT horbachj creepandflowofglassesstrainresponselinkedtothespatialdistributionofdynamicalheterogeneities AT egelhaafsu creepandflowofglassesstrainresponselinkedtothespatialdistributionofdynamicalheterogeneities AT lauratim creepandflowofglassesstrainresponselinkedtothespatialdistributionofdynamicalheterogeneities |