Cargando…
quantro: a data-driven approach to guide the choice of an appropriate normalization method
Normalization is an essential step in the analysis of high-throughput data. Multi-sample global normalization methods, such as quantile normalization, have been successfully used to remove technical variation. However, these methods rely on the assumption that observed global changes across samples...
Autores principales: | Hicks, Stephanie C., Irizarry, Rafael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495646/ https://www.ncbi.nlm.nih.gov/pubmed/26040460 http://dx.doi.org/10.1186/s13059-015-0679-0 |
Ejemplares similares
-
methylCC: technology-independent estimation of cell type composition using differentially methylated regions
por: Hicks, Stephanie C., et al.
Publicado: (2019) -
Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model
por: Townes, F. William, et al.
Publicado: (2019) -
Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers
por: Townes, F. William, et al.
Publicado: (2020) -
Accounting for GC-content bias reduces systematic errors and batch effects in ChIP-seq data
por: Teng, Mingxiang, et al.
Publicado: (2017) -
Validation and extension of an empirical Bayes method for SNP calling on Affymetrix microarrays
por: Lin, Shin, et al.
Publicado: (2008)