Cargando…
Deciding when to stop: efficient experimentation to learn to predict drug-target interactions
BACKGROUND: Active learning is a powerful tool for guiding an experimentation process. Instead of doing all possible experiments in a given domain, active learning can be used to pick the experiments that will add the most knowledge to the current model. Especially, for drug discovery and developmen...
Autores principales: | Temerinac-Ott, Maja, Naik, Armaghan W, Murphy, Robert F |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495685/ https://www.ncbi.nlm.nih.gov/pubmed/26153434 http://dx.doi.org/10.1186/s12859-015-0650-9 |
Ejemplares similares
-
How to assess the efficacy or failure of targeted therapy: Deciding when to stop sorafenib in hepatocellular carcinoma
por: Raoul, Jean-Luc, et al.
Publicado: (2016) -
Observing the Observer (II): Deciding When to Decide
por: Daunizeau, Jean, et al.
Publicado: (2010) -
Deciding when to exit
por: Meserve, Joy H, et al.
Publicado: (2021) -
Deciding when to move
por: Sullivan, Lauren
Publicado: (2023) -
Enhancing onchocerciasis elimination program management: A biological approach to deciding when to begin Stop Mass Drug Administration activities
por: Boakye, Daniel, et al.
Publicado: (2023)