Cargando…

Viral non-coding RNA inhibits HNF4α expression in HCV associated hepatocellular carcinoma

BACKGROUND: Hepatitis C virus (HCV) infection is an established cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC); however, it is unclear if the virus plays a direct role in the development of HCC. Hepatocyte nuclear factor 4α (HNF4α) is critical determinant of epithelial arch...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhao, Ceniccola, Kristin, Florea, Liliana, Wang, Bi-Dar, Lee, Norman H., Kumar, Ajit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495692/
https://www.ncbi.nlm.nih.gov/pubmed/26157476
http://dx.doi.org/10.1186/s13027-015-0014-0
Descripción
Sumario:BACKGROUND: Hepatitis C virus (HCV) infection is an established cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC); however, it is unclear if the virus plays a direct role in the development of HCC. Hepatocyte nuclear factor 4α (HNF4α) is critical determinant of epithelial architecture and hepatic development; depletion of HNF4α is correlated with oncogenic transformation. We explored the viral role in the inhibition of HNF4α expression, and consequent induction of tumor-promoting genes in HCV infection-associated HCC. METHODS: Western blot analysis was used to monitor the changes in expression levels of oncogenic proteins in liver tissues from HCV-infected humanized mice. The mechanism of HNF4α depletion was studied in HCV-infected human hepatocyte cultures in vitro. Targeting of HNF4α expression by viral non-coding RNA was examined by inhibition of Luciferase HNF4α 3’-UTR reporter. Modulation of invasive properties of HCV-infected cells was examined by Matrigel cell migration assay. RESULTS: Results show inhibition of HNF4α expression by targeting of HNF4α 3’-UTR by HCV-derived small non-coding RNA, vmr11. Vmr11 enhances the invasive properties of HCV-infected cells. Loss of HNF4α in HCV-infected liver tumors of humanized mice correlates with the induction of epithelial to mesenchymal transition (EMT) genes. CONCLUSIONS: We show depletion of HNF4α in liver tumors of HCV-infected humanized mice by HCV derived small non-coding RNA (vmr11) and resultant induction of EMT genes, which are critical determinants of tumor progression. These results suggest a direct viral role in the development of hepatocellular carcinoma.