Cargando…

Connexin32 regulates hepatoma cell metastasis and proliferation via the p53 and Akt pathways

Hepatocellular carcinoma (HCC) progresses rapidly and is frequently associated with vascular invasion, metastasis, recurrence, and poor prognosis. The expression of connexin32 (Cx32) is frequently downregulated in HCC tissues. In this study, the role of Cx32 in HCC metastasis and proliferation was i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Bixing, Zhao, Wenxiu, Wang, Yu, Xu, Yaping, Xu, Jianfeng, Tang, Kai, Zhang, Sheng, Yin, Zhenyu, Wu, Qiao, Wang, Xiaomin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496344/
https://www.ncbi.nlm.nih.gov/pubmed/25426556
Descripción
Sumario:Hepatocellular carcinoma (HCC) progresses rapidly and is frequently associated with vascular invasion, metastasis, recurrence, and poor prognosis. The expression of connexin32 (Cx32) is frequently downregulated in HCC tissues. In this study, the role of Cx32 in HCC metastasis and proliferation was investigated. The reduction of Cx32 in HCC tissues was significantly associated with increased vascular invasion, increased tumor size, and poor survival. In vitro assays revealed that Cx32 not only suppressed the invasion and migration of HCC cells, but also repressed HCC cell proliferation. Subsequent investigations revealed that Cx32 directly enhanced the acetylation and transcriptional activity of p53, thus upregulating the expression of the tumor metastasis suppressor protein KAI1/CD82, which is a p53 target gene. Additionally, Cx32 negatively regulated the phosphorylation of Akt and the expression of the cell cycle regulation protein cyclin D1, thereby inhibiting the proliferation of HCC cells. Our in vivo nude mice model further confirmed that Cx32 is able to suppress HCC tumor growth and metastasis in nude mice. Our results imply that Cx32 downregulation contributes to the proliferation and metastasis of HCC, and the restoration of Cx32 expression may be a promising strategy for HCC therapy.