Cargando…

Lung tumorigenesis induced by human vascular endothelial growth factor (hVEGF)-A(165) overexpression in transgenic mice and amelioration of tumor formation by miR-16

Many studies have shown that vascular endothelial growth factor (VEGF), especially the human VEGF-A(165) (hVEGF-A(165)) isoform, is a key proangiogenic factor that is overexpressed in lung cancer. We generated transgenic mice that overexpresses hVEGF-A(165) in lung-specific Clara cells to investigat...

Descripción completa

Detalles Bibliográficos
Autores principales: Tung, Yu-Tang, Huang, Pin-Wu, Chou, Yu-Ching, Lai, Cheng-Wei, Wang, Hsiu-Po, Ho, Heng-Chien, Yen, Chih-Ching, Tu, Chih-Yen, Tsai, Tung-Chou, Yeh, Dah-Cherng, Wang, Jiun-Long, Chong, Kowit-Yu, Chen, Chuan-Mu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496351/
https://www.ncbi.nlm.nih.gov/pubmed/25912305
Descripción
Sumario:Many studies have shown that vascular endothelial growth factor (VEGF), especially the human VEGF-A(165) (hVEGF-A(165)) isoform, is a key proangiogenic factor that is overexpressed in lung cancer. We generated transgenic mice that overexpresses hVEGF-A(165) in lung-specific Clara cells to investigate the development of pulmonary adenocarcinoma. In this study, three transgenic mouse strains were produced by pronuclear microinjection, and Southern blot analysis indicated similar patterns of the foreign gene within the genomes of the transgenic founder mice and their offspring. Accordingly, hVegf-A(165) mRNA was expressed specifically in the lung tissue of the transgenic mice. Histopathological examination of the lung tissues of the transgenic mice showed that hVEGF-A(165) overexpression induced bronchial inflammation, fibrosis, cysts, and adenoma. Pathological section and magnetic resonance imaging (MRI) analyses demonstrated a positive correlation between the development of pulmonary cancer and hVEGF expression levels, which were determined by immunohistochemistry, qRT-PCR, and western blot analyses. Gene expression profiling by cDNA microarray revealed a set of up-regulated genes (hvegf-A(165), cyclin b1, cdc2, egfr, mmp9, nrp-1, and kdr) in VEGF tumors compared with wild-type lung tissues. In addition, overexpressing hVEGF-A(165) in Clara cells increases CD105, fibrogenic genes (collagen α1, α-SMA, TGF-β1, and TIMP1), and inflammatory cytokines (IL-1, IL-6, and TNF-α) in the lungs of hVEGF-A(165)-overexpressing transgenic mice as compared to wild-type mice. We further demonstrated that the intranasal administration of microRNA-16 (miR-16) inhibited lung tumor growth by suppressing VEGF expression via the intrinsic and extrinsic apoptotic pathways. In conclusion, hVEGF-A(165) transgenic mice exhibited complex alterations in gene expression and tumorigenesis and may be a relevant model for studying VEGF-targeted therapies in lung adenocarcinoma.