Cargando…
Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms
Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs) are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks require vast computing resources, leadin...
Autores principales: | Stromatias, Evangelos, Neil, Daniel, Pfeiffer, Michael, Galluppi, Francesco, Furber, Steve B., Liu, Shih-Chii |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496577/ https://www.ncbi.nlm.nih.gov/pubmed/26217169 http://dx.doi.org/10.3389/fnins.2015.00222 |
Ejemplares similares
-
On Practical Issues for Stochastic STDP Hardware With 1-bit Synaptic Weights
por: Yousefzadeh, Amirreza, et al.
Publicado: (2018) -
Breaking the millisecond barrier on SpiNNaker: implementing asynchronous event-based plastic models with microsecond resolution
por: Lagorce, Xavier, et al.
Publicado: (2015) -
A framework for plasticity implementation on the SpiNNaker neural architecture
por: Galluppi, Francesco, et al.
Publicado: (2015) -
Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation
por: Liu, Qian, et al.
Publicado: (2016) -
Comparison of Artificial and Spiking Neural Networks on Digital Hardware
por: Davidson, Simon, et al.
Publicado: (2021)