Cargando…
DPSynthesizer: Differentially Private Data Synthesizer for Privacy Preserving Data Sharing
Differential privacy has recently emerged in private statistical data release as one of the strongest privacy guarantees. Releasing synthetic data that mimic original data with Differential privacy provides a promising way for privacy preserving data sharing and analytics while providing a rigorous...
Autores principales: | Li, Haoran, Xiong, Li, Zhang, Lifan, Jiang, Xiaoqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496798/ https://www.ncbi.nlm.nih.gov/pubmed/26167358 http://dx.doi.org/10.14778/2733004.2733059 |
Ejemplares similares
-
Privacy Preserving RBF Kernel Support Vector Machine
por: Li, Haoran, et al.
Publicado: (2014) -
Privacy-preserving logistic regression with secret sharing
por: Ghavamipour, Ali Reza, et al.
Publicado: (2022) -
Privacy-preserving data sharing via probabilistic modeling
por: Jälkö, Joonas, et al.
Publicado: (2021) -
Privacy preserving data sharing method for social media platforms
por: Yadav, Snehlata, et al.
Publicado: (2023) -
Differentially private distributed logistic regression using private and public data
por: Ji, Zhanglong, et al.
Publicado: (2014)