Cargando…

Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection

BACKGROUND: The presence of variability in the response of pigs to Porcine Reproductive and Respiratory Syndrome virus (PRRSv) infection, and recent demonstration of significant genetic control of such responses, leads us to believe that selection towards more disease resistant pigs could be a valid...

Descripción completa

Detalles Bibliográficos
Autores principales: Schroyen, Martine, Steibel, Juan P., Koltes, James E., Choi, Igseo, Raney, Nancy E., Eisley, Christopher, Fritz-Waters, Eric, Reecy, James M., Dekkers, Jack C. M., Rowland, Robert R. R., Lunney, Joan K., Ernst, Catherine W., Tuggle, Christopher K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496889/
https://www.ncbi.nlm.nih.gov/pubmed/26159815
http://dx.doi.org/10.1186/s12864-015-1741-8
_version_ 1782380477990043648
author Schroyen, Martine
Steibel, Juan P.
Koltes, James E.
Choi, Igseo
Raney, Nancy E.
Eisley, Christopher
Fritz-Waters, Eric
Reecy, James M.
Dekkers, Jack C. M.
Rowland, Robert R. R.
Lunney, Joan K.
Ernst, Catherine W.
Tuggle, Christopher K.
author_facet Schroyen, Martine
Steibel, Juan P.
Koltes, James E.
Choi, Igseo
Raney, Nancy E.
Eisley, Christopher
Fritz-Waters, Eric
Reecy, James M.
Dekkers, Jack C. M.
Rowland, Robert R. R.
Lunney, Joan K.
Ernst, Catherine W.
Tuggle, Christopher K.
author_sort Schroyen, Martine
collection PubMed
description BACKGROUND: The presence of variability in the response of pigs to Porcine Reproductive and Respiratory Syndrome virus (PRRSv) infection, and recent demonstration of significant genetic control of such responses, leads us to believe that selection towards more disease resistant pigs could be a valid strategy to reduce its economic impact on the swine industry. To find underlying molecular differences in PRRS susceptible versus more resistant pigs, 100 animals with extremely different growth rates and viremia levels after PRRSv infection were selected from a total of 600 infected pigs. A microarray experiment was conducted on whole blood RNA samples taken at 0, 4 and 7 days post infection (dpi) from these pigs. From these data, we examined associations of gene expression with weight gain and viral load phenotypes. The single nucleotide polymorphism (SNP) marker WUR10000125 (WUR) on the porcine 60 K SNP chip was shown to be associated with viral load and weight gain after PRRSv infection, and so the effect of the WUR10000125 (WUR) genotype on expression in whole blood was also examined. RESULTS: Limited information was obtained through linear modeling of blood gene differential expression (DE) that contrasted pigs with extreme phenotypes, for growth or viral load or between animals with different WUR genotype. However, using network-based approaches, molecular pathway differences between extreme phenotypic classes could be identified. Several gene clusters of interest were found when Weighted Gene Co-expression Network Analysis (WGCNA) was applied to 4dpi contrasted with 0dpi data. The expression pattern of one such cluster of genes correlated with weight gain and WUR genotype, contained numerous immune response genes such as cytokines, chemokines, interferon type I stimulated genes, apoptotic genes and genes regulating complement activation. In addition, Partial Correlation and Information Theory (PCIT) identified differentially hubbed (DH) genes between the phenotypically divergent groups. GO enrichment revealed that the target genes of these DH genes are enriched in adaptive immune pathways. CONCLUSION: There are molecular differences in blood RNA patterns between pigs with extreme phenotypes or with a different WUR genotype in early responses to PRRSv infection, though they can be quite subtle and more difficult to discover with conventional DE expression analyses. Co-expression analyses such as WGCNA and PCIT can be used to reveal network differences between such extreme response groups. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1741-8) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4496889
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-44968892015-07-10 Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection Schroyen, Martine Steibel, Juan P. Koltes, James E. Choi, Igseo Raney, Nancy E. Eisley, Christopher Fritz-Waters, Eric Reecy, James M. Dekkers, Jack C. M. Rowland, Robert R. R. Lunney, Joan K. Ernst, Catherine W. Tuggle, Christopher K. BMC Genomics Research Article BACKGROUND: The presence of variability in the response of pigs to Porcine Reproductive and Respiratory Syndrome virus (PRRSv) infection, and recent demonstration of significant genetic control of such responses, leads us to believe that selection towards more disease resistant pigs could be a valid strategy to reduce its economic impact on the swine industry. To find underlying molecular differences in PRRS susceptible versus more resistant pigs, 100 animals with extremely different growth rates and viremia levels after PRRSv infection were selected from a total of 600 infected pigs. A microarray experiment was conducted on whole blood RNA samples taken at 0, 4 and 7 days post infection (dpi) from these pigs. From these data, we examined associations of gene expression with weight gain and viral load phenotypes. The single nucleotide polymorphism (SNP) marker WUR10000125 (WUR) on the porcine 60 K SNP chip was shown to be associated with viral load and weight gain after PRRSv infection, and so the effect of the WUR10000125 (WUR) genotype on expression in whole blood was also examined. RESULTS: Limited information was obtained through linear modeling of blood gene differential expression (DE) that contrasted pigs with extreme phenotypes, for growth or viral load or between animals with different WUR genotype. However, using network-based approaches, molecular pathway differences between extreme phenotypic classes could be identified. Several gene clusters of interest were found when Weighted Gene Co-expression Network Analysis (WGCNA) was applied to 4dpi contrasted with 0dpi data. The expression pattern of one such cluster of genes correlated with weight gain and WUR genotype, contained numerous immune response genes such as cytokines, chemokines, interferon type I stimulated genes, apoptotic genes and genes regulating complement activation. In addition, Partial Correlation and Information Theory (PCIT) identified differentially hubbed (DH) genes between the phenotypically divergent groups. GO enrichment revealed that the target genes of these DH genes are enriched in adaptive immune pathways. CONCLUSION: There are molecular differences in blood RNA patterns between pigs with extreme phenotypes or with a different WUR genotype in early responses to PRRSv infection, though they can be quite subtle and more difficult to discover with conventional DE expression analyses. Co-expression analyses such as WGCNA and PCIT can be used to reveal network differences between such extreme response groups. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1741-8) contains supplementary material, which is available to authorized users. BioMed Central 2015-07-10 /pmc/articles/PMC4496889/ /pubmed/26159815 http://dx.doi.org/10.1186/s12864-015-1741-8 Text en © Schroyen et al. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Schroyen, Martine
Steibel, Juan P.
Koltes, James E.
Choi, Igseo
Raney, Nancy E.
Eisley, Christopher
Fritz-Waters, Eric
Reecy, James M.
Dekkers, Jack C. M.
Rowland, Robert R. R.
Lunney, Joan K.
Ernst, Catherine W.
Tuggle, Christopher K.
Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection
title Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection
title_full Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection
title_fullStr Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection
title_full_unstemmed Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection
title_short Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection
title_sort whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496889/
https://www.ncbi.nlm.nih.gov/pubmed/26159815
http://dx.doi.org/10.1186/s12864-015-1741-8
work_keys_str_mv AT schroyenmartine wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT steibeljuanp wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT koltesjamese wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT choiigseo wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT raneynancye wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT eisleychristopher wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT fritzwaterseric wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT reecyjamesm wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT dekkersjackcm wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT rowlandrobertrr wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT lunneyjoank wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT ernstcatherinew wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection
AT tugglechristopherk wholebloodmicroarrayanalysisofpigsshowingextremephenotypesafteraporcinereproductiveandrespiratorysyndromevirusinfection