Cargando…
Boosting accuracy of automated classification of fluorescence microscope images for location proteomics
BACKGROUND: Detailed knowledge of the subcellular location of each expressed protein is critical to a full understanding of its function. Fluorescence microscopy, in combination with methods for fluorescent tagging, is the most suitable current method for proteome-wide determination of subcellular l...
Autores principales: | Huang, Kai, Murphy, Robert F |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC449699/ https://www.ncbi.nlm.nih.gov/pubmed/15207009 http://dx.doi.org/10.1186/1471-2105-5-78 |
Ejemplares similares
-
A multiresolution approach to automated classification of protein subcellular location images
por: Chebira, Amina, et al.
Publicado: (2007) -
A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images
por: Chen, Shann-Ching, et al.
Publicado: (2006) -
Fast automated yeast cell counting algorithm using bright-field and fluorescence microscopic images
por: Hong, Dongpyo, et al.
Publicado: (2013) -
Novel semi-automated fluorescence microscope imaging algorithm for monitoring IgG aggregates in serum
por: Sreenivasan, Shravan, et al.
Publicado: (2021) -
Computer-Aided Image Enhanced Endoscopy Automated System to Boost Polyp and Adenoma Detection Accuracy
por: Tang, Chia-Pei, et al.
Publicado: (2022)