Cargando…

A data management system for structural genomics

BACKGROUND: Structural genomics (SG) projects aim to determine thousands of protein structures by the development of high-throughput techniques for all steps of the experimental structure determination pipeline. Crucial to the success of such endeavours is the careful tracking and archiving of exper...

Descripción completa

Detalles Bibliográficos
Autores principales: Raymond, Stéphane, O'Toole, Nicholas, Cygler, Miroslaw
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC449731/
https://www.ncbi.nlm.nih.gov/pubmed/15210054
http://dx.doi.org/10.1186/1477-5956-2-4
Descripción
Sumario:BACKGROUND: Structural genomics (SG) projects aim to determine thousands of protein structures by the development of high-throughput techniques for all steps of the experimental structure determination pipeline. Crucial to the success of such endeavours is the careful tracking and archiving of experimental and external data on protein targets. RESULTS: We have developed a sophisticated data management system for structural genomics. Central to the system is an Oracle-based, SQL-interfaced database. The database schema deals with all facets of the structure determination process, from target selection to data deposition. Users access the database via any web browser. Experimental data is input by users with pre-defined web forms. Data can be displayed according to numerous criteria. A list of all current target proteins can be viewed, with links for each target to associated entries in external databases. To avoid unnecessary work on targets, our data management system matches protein sequences weekly using BLAST to entries in the Protein Data Bank and to targets of other SG centers worldwide. CONCLUSION: Our system is a working, effective and user-friendly data management tool for structural genomics projects. In this report we present a detailed summary of the various capabilities of the system, using real target data as examples, and indicate our plans for future enhancements.