Cargando…

Palladium-Catalyzed Synthesis of Ammonium Sulfinates from Aryl Halides and a Sulfur Dioxide Surrogate: A Gas- and Reductant-Free Process**

Sulfonyl-derived functional groups populate a broad range of useful molecules and materials, and despite a variety of preparative methods being available, processes which introduce the most basic sulfonyl building block, sulfur dioxide, using catalytic methods, are rare. Described herein is a simple...

Descripción completa

Detalles Bibliográficos
Autores principales: Emmett, Edward J, Hayter, Barry R, Willis, Michael C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497614/
https://www.ncbi.nlm.nih.gov/pubmed/25066222
http://dx.doi.org/10.1002/anie.201404527
Descripción
Sumario:Sulfonyl-derived functional groups populate a broad range of useful molecules and materials, and despite a variety of preparative methods being available, processes which introduce the most basic sulfonyl building block, sulfur dioxide, using catalytic methods, are rare. Described herein is a simple reaction system consisting of the sulfur dioxide surrogate DABSO, triethylamine, and a palladium(0) catalyst for effective convertion of a broad range of aryl and heteroaryl halides into the corresponding ammonium sulfinates. Key features of this gas- and reductant-free reaction include the low loadings of palladium (1 mol %) and ligand (1.5 mol %) which can be employed, and the use of isopropyl alcohol as both a solvent and formal reductant. The ammonium sulfinate products are converted in situ into a variety of sulfonyl-containing functional groups, including sulfones, sulfonyl chlorides, and sulfonamides.