Cargando…
Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes
The first decade of Genome Wide Association Studies (GWAS) has uncovered a wealth of disease-associated variants. Two important derivations will be the translation of this information into a multiscale understanding of pathogenic variants and leveraging existing data to increase the power of existin...
Autores principales: | Himmelstein, Daniel S., Baranzini, Sergio E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497619/ https://www.ncbi.nlm.nih.gov/pubmed/26158728 http://dx.doi.org/10.1371/journal.pcbi.1004259 |
Ejemplares similares
-
Systematic integration of biomedical knowledge prioritizes drugs for repurposing
por: Himmelstein, Daniel Scott, et al.
Publicado: (2017) -
iCTNet2: integrating heterogeneous biological interactions to understand complex traits
por: Wang, Lili, et al.
Publicado: (2015) -
NERI: network-medicine based integrative approach for disease gene prioritization by relative importance
por: Simões, Sérgio N, et al.
Publicado: (2015) -
The probability of edge existence due to node degree: a baseline for network-based predictions
por: Zietz, Michael, et al.
Publicado: (2023) -
Edge-Aided Reliable Data Transmission for Heterogeneous Edge-IoT Sensor Networks
por: Xu, Zhirong, et al.
Publicado: (2019)