Cargando…
Learning Multirobot Hose Transportation and Deployment by Distributed Round-Robin Q-Learning
Multi-Agent Reinforcement Learning (MARL) algorithms face two main difficulties: the curse of dimensionality, and environment non-stationarity due to the independent learning processes carried out by the agents concurrently. In this paper we formalize and prove the convergence of a Distributed Round...
Autores principales: | Fernandez-Gauna, Borja, Etxeberria-Agiriano, Ismael, Graña, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497621/ https://www.ncbi.nlm.nih.gov/pubmed/26158587 http://dx.doi.org/10.1371/journal.pone.0127129 |
Ejemplares similares
-
Hose practices
por: International Fire Service Training Association
Publicado: (1988) -
Scarlet Hose
Publicado: (1870) -
Distributed control for geometric pattern formation of large-scale multirobot systems
por: Giusti, Andrea, et al.
Publicado: (2023) -
Multirobot Heterogeneous Control Considering Secondary Objectives
por: Acosta, Julio F., et al.
Publicado: (2019) -
Plug-and-play round-robin differential phase-shift quantum key distribution
por: Mao, Qian-Ping, et al.
Publicado: (2017)